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Abstract

The following thesis presents real-time techniques for virtual hair simula-
tion, generation and rendering. It refers to a prototype which has been im-
plemented within the scope of this bachelor thesis. After discussing prop-
erties of human hair in section 2, section 3 outlines simulation methods
and explicitly explains mass-spring systems. All simulation methods are
based on particles, which are used to generate geometry and subsequent
to render hair strands. This generation process is explained in chapter 4
geometry generation. Besides the Kajiya and Kay’s Hair Model, the Marschner
Shading Model, and a third, artist friendly shading system, section 5 will
describe shadow and self-shadowing techniques, such as deep opacity maps.
While the subjects of the first sections are platform-independent methods
and properties, section 6 presents DirectX 11 oriented implementation de-
tails. Finally, the prototype is used to analyze the quality as well as the
efficiency of covered techniques.

Zusammenfassung

Die folgende Arbeit behandelt Techniken zur virtuellen Echtzeitdarstel-
lung von Haaren. Dabei wird eine Unterteilung zwischen Simulations-
und Rendertechniken vorgenommen. Die Kapitel beziehen sich auf einen
Prototyp, der im Rahmen dieser Bachelor-Arbeit entstanden ist. Nachdem
in Kapitel 2 die Eigenschaften des menschlichen Haares behandelt wur-
den, greift Kapitel 3 verschiedene Simulationsverfahren und ausdrücklich
Masse-Feder Systeme auf. Alle erläuterten Simulationsverfahren basieren
auf Partikeln, welche zur Geometrieerzeugung und damit zum Rendern
genutzt werden. Während dieser Erzeugungsvorgang in Kapitel 4 Geome-
try Generation beschrieben wird, werden Rendertechniken in Kapitel 5 be-
sprochen. Neben den Darstellungsmodellen Kajiya and Kay’s Hair Model,
The Marschner Shading Model und einem artistenorientiertem Model wird
die Realisierung von Selbst-Verschattung und Schattenschlag behandelt.
Während die ersten Kapitel plattformunabhängige Methoden und Eigen-
schaften vorstellen, geht Kapitel 6 auf DirectX 11 orientierte Implemen-
tierungsdetails ein. Des Weiteren werden die Qualität der Techniken und
der involvierte Rechen- aufwand anhand des Prototyps analysiert.
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1 Introduction

Virtual characters appear in various contexts, such as in animation films
or computer games and are expected to look realistic or in the way a di-
rector specified. This involves a convincing hair simulation, which is a
challenging task. Cosmetic companies are interested in hair simulations as
well, requiring detailed systems for prototyping. Since the human head has
around 100.000 hairs, each one reacting to forces such as wind or friction,
physical representations are only approximating the behaviour of hair and
are computationally expensive. Further, hair fibers exhibit complex scat-
tering properties which have to be considered to present natural results.
These tasks have concerned researchers for more than two decades and can
be addressed continually better with increasing processing power. Some
simulation techniques are dedicated to offline renderers and are primar-
ily used in motion pictures. The animation film Final Fantasy: The Spirits
Within [12], released in 2001, set new standards by animating 60.000 sepa-
rate hairs. Tangled, an animation film released in 2010, even focuses on hair
animation. The shader used in this film will be discussed in section 5.3.
In 2003 Nvidia presented the Nalu Demo which proved that believable hair
can also be simulated in real-time. Most computer games use very basic
methods to present hair or simply avoid hair by distributing head cover-
ings, such as helmets.
This thesis presents different approaches to the simulation and rendering
aspects of human hair and explains which ones are adaptable for real-time
applications. Long smooth hair is emphasized, but other hair styles are
considered as well. After comparing techniques a prototype gets devel-
oped, outlining implementation details. It is based on DirectX 11 and uses
the capabilities of modern graphic cards to be as efficient as possible.
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2 Properties of human hair

Before discussing ways to simulate human hair styles, it is necessary to un-
derstand the properties of human hair. A detailed description of physical
and chemical hair behaviour is given by C. R. Robbins [54].
Figure 1 illustrates the body of a human hair shaft. It consists of two cru-
cial parts: The cortex and the cuticle. The cortex consists of spindle-shaped
keratin filaments and contributes about 90% of the total hair weight, see
[26]. It often encloses one or more regions, which are called medulla (lat.
medulla = „marrow"), located near the centre of the strand. The boundary
of a hair strand is the cuticle. When light rays hit a fiber they interfere with
this layer, which forms scales that have a significant effect on light scat-
tering. Because of the small cross-section of hair fibers, which is between
50 − 120µm in diameter, depending on the age and the ethnic background
of a person, they are subject to bending. On the other hand, hair strongly
resists to shearing and stretching forces. This is due to the amount of ker-
atin, which is a stiff material. The elastic modulus (Young’s modulus) of
hair fibers averages 3.89GPa and is comparable to the elastic modulus of
wood [14, 54]. Robbins classifies hair properties by three ethnic groups:
Caucasians, Mongolians and Ethiopians. While people with typical Eu-
ropean hair would be part of the first group, Asians would belong to the
Mongolian category and people with typical African hair would be part of
the latter group, namely Ethiopians. Characteristic values for these groups
are listed in table 1.

Ethnic group Diameter1 Eccentricity Curvature Color
Ethiopians 90.62µm 0.82 Wavy to

wooly
Brown-black to
black

Caucasians 63.93µm 0.67 Straight to
curly

Blond to dark
brown

Mongolians 79.53µm 0.60 Straight to
wavy

Dark brown to
brown-black

Table 1: Average hair characteristics classified by ethnic groups [54, 58].

Ethiopian hair is coarse and primarily black. The highly eccentric cross-
section causes this type of hair to be wavy to wooly. On average Cau-
casian hair strands are less elliptical and can be straight to curly. Mon-
golians posses hair that’s cross-section is most similar to a circle. Hence,
Mongolians have straight to wavy hair. The color of hair is determined
by the composition of melanin, which is enclosed in cortex cells. Red and
blond strands exhibit a higher concentration of pheomelanin. Eumelanin
is brown to black and is more abundant in hair of dark skinned people.

1Measured along the long principal axis of the elliptical cross-section.
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Figure 1: Schematic illustration of a single hair.

With increasing age the amount of melanin decreases until the hair is grey
or white. Around 200 hair strands are located on the scalp of a Caucasian
person per square centimetre [45]. The index of refraction of human hair
is approximately 1.55 [40]. A detailed image of a hair strand taken with a
scanning electron microscope can be found in appendix A.1.
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3 Simulation

Simulating a single hair is a problem of elastic rod theory [35,59]. Most elas-
tic rod models are well suited to present the physical behaviour of hair in
a realistic way, but are only capable of running in real-time for individual
threads. It is a common approach to discretize each strand by a set of nodes.
These nodes (also called particles) are subject to constraints and their kine-
matics describe the motion of a thread or a hair strand. For rendering pur-
poses nodes get connected by geometry, as described in section 6.2.

Figure 2: Hair strands are represented by particles. This illustration presents the
initial as well as the current state of a strand, accompanied by notations.

When expressing strands as particles, the simulation process and the pro-
cess of geometry generation occur autonomously. Simulated particles form
guide hairs, which can be used to create more than a single hair strand. Sec-
tion 4.2 presents interpolation techniques for guide hairs. It is also possible
to create flat meshes with hair textures on the basis of particles [36], which
is efficient, but produces unnatural appearing hair. The succeeding section
will discuss various simulation methods, related to particles.
Throughout this thesis following notations will be used (see figure 2):

• p0 .. pn ∈ R3: Position of a strand particle, where p0 is located at the
hair root and n ∈ N is the number of particles per strand minus one.

• np is the number of particles and ns is the number of segments per
strand.

• ~v∗1 .. ~v∗ns ∈ R3: Initial position of a strand particle, relative to its prior
particle. At the beginning of the simulation following condition is
met: ~v∗i = pi − pi−1 ∀i ∈ {1..ns}.

• si: Segment between particle pi and pi−1, where i ∈ {1..ns}.
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3.1 Methods

In the last two decades several methods for hair simulation were acquired.
But due to complex hair characteristics, only a few are applicable for real-
time environments. In 1992 Anjyo et al. introduced One Dimensional Projec-
tive Equations for hair dynamics [3,31]. Similar to other methods, dynamics
are mapped on nodes that receive kinetic energy. Each node pi spans its
own spherical coordinate system containing pi+1. Given a force F , that is
acting on si+1, the translation of pi+1 is computed by projecting the force
vector onto two perpendicular planes. This yields two forces Fθ, Fφ which
are acting on the azimuth and inclination angle of the polar coordinates.
The angular accelerations can then be solved by two ordinary differential
equations:

d2θi
dt2

= ciuiFθ (1)

d2φi
dt2

= civiFφ

where ci is a constant related to the inertia moment of Si and ui, vi are
length specifications, with the result that uiFθ, uiFφ combine into a moment
of force respectively.
By iterating over all particles, while solving the angular acceleration, the
hair motion is described. One dimensional projective equations are sim-
ple, stable and efficient, but are not able to simulate torsion. Furthermore,
the original algorithm ignores hair-hair interaction and isn’t able to handle
collisions in a sufficient way [63]. Improved versions such as those by Lee
and Ko [1] and Jung et al. [67] approach these problems, but are inaccurate,
especially when accounting for hair-hair interaction of long strands.
Another method for hair simulations are Free-Form Deformations [47]. 2004
Volino et al. [62] showed that their lattice model can be used to approximate
the behaviour of hair in real-time. To implement this method a grid is built
around the head, which is subject to distortion. This deformation is repro-
duced to the hair geometry. Because it can be non-linear it is more capable
than affine transformations, but since distortion treats hair in a continuous
way, it is unable to predict the behaviour of single wisps.
In 2001 Hadap et al. introduced a continuum based approach to model hair
dynamics [28]. Continuum based simulations assume that the object of in-
terest is not constructed by discrete elements or particles but rather by a
steadily spread medium. They are commonly used to model the behaviour
of fluids. Because in essence, each medium is arranged by atoms, there is
an imprecision with continuum based systems, but at distant observation
they are very accurate. Strands retain their individual dynamics however,
which does not fit into a continuum based approach, but partly react con-
tinuously due to hair-hair interaction. Hence Hadap et al. simulate single
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hairs using rigid multi-body serial chains and account for inter hair character-
istics by utilizing continuum dynamics. They represent the density of the
hair continuum by the number of hair strands per volume unit. Although
the dimension of atoms is not comparable to the dimension of hair strands
with respect to the scaling of the simulation, Hadap et al. produced real-
istic results with this approach. Their method uses Langrangian formula-
tions of fluid dynamics. Eulerian formulations are possible as well [48] and
McAdams et al. [42] presented a hybrid approach. Langrangian and Eule-
rian representations differ in their viewpoint. While in a Langrangian rep-
resentation properties are expressed relative to moving particles, they are
expressed relative to grid points in Eulerian representations. Rigid multi-
body serial chains descend from forward kinematics, which have exten-
sively been investigated in the context of robot dynamics [7, 18]. Because
mass-spring systems are more efficient and often used in real-time simu-
lations, they are explicitly discussed in the the following section, whereas
rigid multi-body serial chains are neglected in this thesis.

3.2 Mass-Spring System

Mass-Spring systems are often used to animate deformable objects. They
are well studied, because they have been deployed in cloth simulations for
a long time. Advantages of mass-spring systems are, that they are easy,
efficient and produce realistic results. To apply such a system to the hair
simulation, each particle functions as a mass-point and each segment as a
spring. The mass-points are subject to forces and accordingly to Newton’s
second law of motion receive acceleration:

~F = m~a⇐⇒ ~a =
~F

m
(2)

When time progresses, this results in a change of velocity and consequen-
tially in a change of position. A force that is acting continuously on all
points is the gravitational force. Other external forces derive from wind
or friction. Springs allow particles to react on forces, but also introduce
constraints to maintain the hair’s shape. The spring forces are depicted in
figure 3.
The arrows in the first row of this figure illustrate in which directions forces
of coil springs are acting. If the distance between two particles p1, p2 is
lower than the original distance d, the spring force ~f1 is directed from p2 to
p1 and ~f2 in the opposite direction. Would the distance be higher than the
rest distance, the forces would point in reversed direction. In both cases the
forces cause an acceleration, that attempts to restore the original distance
between p1 and p2. These forces are described by Hooke’s law:
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F = −kx (3)

~f1 = −0.5kx
p1 − p2

‖p1 − p2‖
= −~f2

= −0.5k(‖p1 − p2‖ − d)
p1 − p2

‖p1 − p2‖
∀p1, p2 ∈ R3 ∧ p1 6= p2

In this law k is called the spring constant and defines the stiffness of a
spring. The higher this constant, the higher the reacting force. x is the
displacement of the particles relative to their rest distance. Since the spring
force F is distributed on both particles, each gains half the force in reversed
direction. Equation 3 states how Hook’s law can be applied to particles. If
p1 equals p2 the direction of forces ~f1 and ~f2 are undefined, a case one has
to prevent in a mass-spring system.
Materials that are simulated by mass-spring systems can experience arbi-
trary high deformation and thus are called super-elastic. As mentioned pre-
viously, hair is a stiff material especially resistant to shearing and stretch-
ing forces. At room temperature the extension at break of hair amounts to
48% [54]. Hair that’s length is further extended will break. This however,
would require very high stress and hairs would be ripped out before break-
age. Even strong wind would not cause any noticeable hair extension and
hence common hair simulations try to suppress any change of hair length.
Such behaviour can be approached by choosing high values for k. Would
the value be to low, strands could not maintain their length, when forces are
acting. On the other hand a high spring constant involves small time steps
or else the governing equations may not converge and therefore become
unstable. Furthermore, stiff springs cause a stronger oscillation, which is
unnatural for most materials. Finally, a loss of angular momentum [32] can
be caused when using larger k-values in combination with implicit inte-
gration. Provot addressed this problem in 1995 [53] and introduced a post-

Coil springs:

Angular springs:

Figure 3: Coil spring and angular springs
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processing mechanism for spring based dynamics. He defines a maximal
extension factor for coil springs τ . Springs that exceed the specified ex-
tension are contracted to meet the constraint. This also allows to use small
k-values, larger time steps and hence fewer iterations. It would also be pos-
sible to adjust the velocities of particles, instead of the positions. Such an
approach is given by Bridson et al. [6]. The simulation however described
in section 6 uses Provot’s method.
Coil springs are practical to simulate deformable objects and to meet dis-
tance constraints. On the downside, they are inappropriate to restore an
initial state of a hair strand. Since hair styles tend to recover their origi-
nal state, angular springs are utilized to introduce a second, angular con-
straint. Whenever mass-points move in space, angular springs can be used
to force them back to their original position, relative to the prior particle.
One could imagine a gust of wind that moves the hair of a person with a
short hairstyle. It is likely that after the gust the hair strands of the person
fall back in place. Such situations can be handled with angular springs. The
structure of angular springs is depicted in the second row of figure 3.
Hook’s law can be applied to angular springs in the same manner as to coil
springs. Assuming, that segment sj is of unit length, the (angular) displace-
ment x of particle pj+1 to its rest position is equal to the angle between seg-
ment sj being in rest position and segment sj , measured in radians. Since
x = δ · |sj |, where δ is the referred angle, adjustments to k can account for
variations in segment length. A difficulty that appears, when connecting
segments by springs is, that each particle needs a frame of reference to iden-
tify the angular rest position of a subsequent particle. The simulation be-
longing to this thesis stores the initial position vector ~v∗i of particles relative
to prior particles. Whenever a segment sj is rotated, the rotation is also ap-
plied to initial position vectors of subsequent particles, yielding ~v′i ∀i ≥ j.
~vi is defined as ~vi = pi+1−pi. Let δ(~a,~b) be the angle between two vectors ~a
and~b of same length andQ(~a,~b, ω) be a quaternion that results in a rotation
of ω around ~a×~b, clockwise, then ~v′i can be formulated as2:

~v′i =


v∗1 if i = 1
i−1∏
k=1

(
Q
(
~v′k, ~vk, δ(~v

′
k, ~vk)

))
· ~v∗i otherwise

(4)

When ~v′i is constituted, x can simply be calculated by x = δ(~v′i, ~vi) · |si|,
while the force is oriented by ~df = ~v′i − ~v

′p
i . Here ~v′pi is the projection of ~v′i

onto the vector ~vi. The force can be directed more efficiently by choosing
~df = pi−1 +~v′i− pi, with the side benefit of supporting distance constraints,
even though this is an approximation. Equation 4 exposes, that several
rotations have to be accumulated to gain ~v′i. Hence, the use of quaternions

2It is presumed, that neither ~a, nor~b are of length zero. If ~a equals~b, no rotation is applied.

8



helps to reduce the total amount of calculations. In [13] Melax describes
a stable procedure to create quaternions based on two vectors, which has
been used for this simulation.
Some hair simulations [61] approximate angular constrains with flexion-
springs. Flexion springs are identical to coil springs, but connect distanced
mass-points, rather than neighboring points. By this topology they react
to bending, since bending forces change the relative positions of specific
particles. Flexion springs are very common in cloth simulation systems,
but have major drawbacks when applied to hair systems. Firstly, multi-
ple different rest configurations can occur, that cause hair strands to adopt
malformed shapes. Furthermore, they introduce more than a solely angu-
lar constraint and thus cause a loss of angular momentum.

3.3 Numerical Integration

The previous section described that forces are acting on particles and that
these forces result in velocity and hence in a change of position. A naive
approach to applying forces would only regard the current position p, the
current velocity ṗ, the timestep ∆t and the force f :

p̈(t) =
f(p(t))

m
=
d2p

dt2
(5)

ṗ(t+ ∆t) = ṗ(t) + p̈(t)∆t

p(t+ ∆t) = p(t) + ṗ(t)∆t

where p̈ is acceleration and t an instant of time. These equations could
be solved after each simulation time step, starting from an initial config-
uration. Solving p(t + ∆t) obviously includes solving ordinary differential
equations (ODEs), which take the form:

p(n)(t) = g(t, p, p′, ..., p(n−1)) (explicit) (6)
0 = g(t, p, p′, ..., p(n)) (implicit)

The formulations above (equation 5) are equivalent to the explicit Euler
method and can be derived as follows:

ṗ(t) = g(t, p) (7)

⇒ p(t+ ∆t)− p(t)
∆t

= g(t, p)

⇒ p(t+ ∆t) = p(t) + ṗ(t)∆t

This is the most basic method for numerical integration of ordinary dif-
ferential equations. It assumes that ṗ(t) is constant during a timestep ∆t.
The error, that arises because of this assumption, can be measured by com-
paring the approximation p with the infinite Taylor series expansion of the
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exact solution pe to the ODE [24]. Subtracting p from pe yields:

pe =
∞∑
n=0

p(n)(t)

n!
∆tn = p(t) + ṗ(t)∆t+

1

2
p̈(t)∆t2 + ... (8)

pe − p =
1

2
p̈(t)∆t2 +

1

6

...
p (t)∆t3 + ...

The above polynomial shows, that the lowest order error in O-notation is
O(∆t2). Hence the explicit Euler method offers a first order approxima-
tion. Preferable numerical methods have three properties: They converge,
which means that smaller time steps produce results closer to the real so-
lution, they are of high order to reduce the error and they are stable. An
improvement of the explicit Euler method is the implicit or backward Euler.
The implicit Euler method computes p(t+ ∆t) by equating:

p(t+ ∆t) = p(t) + g(t+ ∆t, p(t+ ∆t))∆t (9)

which has to be regrouped and solved as an algebraic equation. Baraff
and Witkin showed [4] that this allows large time-steps in mass-spring sys-
tems. A more popular method to solve ordinary differential equations in
interactive applications is the Verlet method. Advantages of this method are
efficiency and accuracy. It is derived by adding two third order Taylor se-
ries:

p(t+ ∆t) = p(t) + ṗ(t)∆t+
1

2
p̈(t)∆t2 +

1

6

...
p (t)∆t3 (10)

p(t−∆t) = p(t)− ṗ(t)∆t+
1

2
p̈(t)∆t2 − 1

6

...
p (t)∆t3

⇒ p(t+ ∆t) = 2p(t) + p̈(t)∆t2 − p(t−∆t)

while the velocity, if required, can be expressed by a first order approxima-
tion:

ṗ(t+ ∆t) =
p(t+ ∆t)− p(t)

∆t
(11)

Since p(t+ ∆t) depends on p(t−∆t) as well as p(t), the last position has to
be stored beside the current position. More precise velocity values can be
gained by employing the related Velocity Verlet method. Its velocity is based
on a half time-steps, resulting in these equations:

p(t+ ∆t) = p(t) + ṗ(t)∆t+
1

2
p̈(t)∆t2 (12)

ṗ(t+ ∆t) = ṗ(t) +
1

2
(p̈(t) + p̈(t+ ∆t))∆t

where the acceleration has to be computed at the time of t and t+∆t. This is
possible because forces are only position-dependent. In order to treat both
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Figure 4: Constraints are satisfied multiple times per simulation step.

methods in a similar way, one could attach a buffer to each particle which
either stores the old position p(t−∆t) or p̈(t) according to the method. The
process of integration is illustrated in figure 4. To produce smooth results,
constraints are satisfied multiple times per simulation step. Whenever con-
straint forces are applied to particles, the numerical integration is executed
to change properties accordingly. Common external forces emerge from
gravitation or wind. Gravitation can be introduced by accelerating all par-
ticles along the negative y-axis. If particles are of uniform mass, this is
equal to adding a constant force to them. The simulation, further described
in section 6, adds smoothed random force vectors to particles to simulate
wind. These force vectors are scaled depending on their orientation to-
wards tangent vectors, to account for windage. The appendix contains a
series of pictures to demonstrate the influence of wind (Appendix A.4, fig-
ure 31).
Which of the two Verlet variants is better suited depends upon the appli-
cation. The latter provides more precise velocity, but less precise position
values. Other popular methods are the fourth-order Runge–Kutta method
RK4 or leapfrog integration.

3.4 Collision

Without convincing collision handling virtual scenes become clearly artifi-
cial. This holds true for hair simulations, where hair-hair and hair-body in-
teraction are of interest. Because hair-hair interaction is approached by spe-
cial simulation methods such as fluid dynamics, see section 3.1, hair-body
interaction is the focus here. The process of handling collisions is sepa-
rated in collision detection and collision response. To detect collisions between
body and hair, the body mesh is usually approximated by simple geometric
objects, because exact determinations are not possible in real-time environ-
ments. For the same reason hair strands too are represented by simpler
objects. Since distance constraints are most efficient with spheres, the sim-
ulation described in this thesis approximates characters solely by spheres.
With regards to collision detection, strands can be represented by its seg-
ments, its nodes or by generalized cylinders [8]. While general cylinders
would model best on hair wisps, they are neglected here for performance
reasons. Nguyen and Donnelly [49] describe a pearl configuration based on
particles which is faster than collision tests with segments and works well.
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(a) Demonstration at t = 0.0s (b) Demonstration at t = 1.0s

(c) Demonstration at t = 2.0s (d) Demonstration at t = 2.5s

(e) Demonstration at t = 3.0s (f) Demonstration at t = 4.0s

Figure 5: Series of pictures to demonstrate collision detection and response, where
rp = 0. 180 guide hairs with 10 segments were used to create 5580 in-
terpolated hairs. Strands are shaded with the artist friendly system de-
scribed in section 5.3

Particles receive a circumference, which increases towards the hair tips, re-
sulting in collision tests between spheres. Let k be the number of collision
spheres that belong to a character, cj ∈ R3 the related centres and rj the
related radii, where j ∈ {0..k − 1}. Then a collision between a particle and
a sphere is detected if and only if:

|pi − cj | − (rj + rp) < 0 (13)

or to avoid a square root operation:

|pi − cj |2 − (rj + rp)
2 < 0 (14)

The variable rp allows customized circumferences and has been introduced
to prevent segments from penetrating the body. Higher rp values reduce
the accuracy of the collision detection, but also degrease undetected colli-
sions. If segments are small, low rp are sufficient and the imprecision is not
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noticeable. Figure 5 demonstrates the process of collision detection and re-
sponse, where no pearl configuration was necessary due to small segments.
In order to resolve collisions, impulsive responses are used. They are based
on Newton’s law of restitution for instantaneous collisions with no friction, which
makes three simplifying assumptions about collisions [24]: The collision
has no duration, meaning that attributes are changed instantaneously. Tan-
gential forces due to friction are neglected. A quantity known as the coef-
ficient of restitution accounts for submolecular interactions and energy loss.
The law states that after the collision, the linear momentum is conserved:

qc + qp = q′c + q′p (15)
→ q′c = qc + q̂

→ q′p = qp − q̂

where qc, qp are the momenta before, q′c, q′p are the momenta after the colli-
sion and q̂ is an idealized impulse. Let ṗ be the velocity of a particle, ċ be
the velocity of a collision sphere and ~n the normal to the collision plane,
then ṗ′ and ċ′ can be expressed by:

ċ′ = ċ+
q̂

mc
~n (16)

ṗ′ = ṗ− q̂

mp
~n

The coefficient of restitution indicates how elastic two objects collide. While
a value of 1 means that both objects collide perfectly elastically smaller val-
ues belong to inelastic collisions. It is defined as ratio between velocity
difference before and after the collision:

ε =
~n ◦ (ṗ′ − ċ′)
~n ◦ (ċ− ṗ)

(17)

Combining equation 15 and equation 16 yields changed velocities by solv-
ing q̂:

q̂ = ~n ◦ (ε+ 1)(ṗ− ċ)
1
mc

+ 1
mp

(18)

Because the body mass is many times higher than the mass of hair strands,
mc can be assumed to be infinite, simplifying equation 18:

q̂ = ~n ◦ (ε+ 1)(ṗ− ċ)mp (19)

Finally the new velocity of a particle, colliding with a sphere is described
by:

ṗ′ = ṗ−
(
~n ◦ (ε+ 1)(ṗ− ċ)

)
~n (20)
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Figure 6: Collision detection between a pearl with radius rp and a sphere with
radius rj . Here, two response methods are presented.

In addition to updating the particle’s velocity, the actual collision has to be
dissolved. This happens either by repositioning the particle along p − c or
backward to its direction of movement. Both methods result in a different
collision plane, as depicted in figure 6.
The updated position pa or pb can be expressed by:

pa = (rj + rp)
p− c
|p− c|

(21)

pb = sṗ+ p

Here sṗ + p is a parametric representation of a straight line. s can be com-
puted by solving |sṗ + p − c| = rj + rp and using the s value lesser than
zero. Another way of handling collision responses are penalty forces. At
their essence, penalty forces are spring forces acting against the interpen-
etration of objects. In terms of particles, which are penetrating collision
spheres, penalty forces could be introduced by inserting a stiff spring be-
tween pb or pa and p. The lower the spring damping would be, the more
elastic the collision response. One advantage of penalty forces is, that they
react well, when multiple objects are colliding at one time. On the down-
side they allow penetration and become inaccurate with high velocities.
For that reason impulsive responses have been chosen for the simulation
belonging to this thesis. If a particle is placed inside a collision sphere after
a response, the newly introduced penetration is handled at the next simu-
lation step. Such misplacement could be suppressed with additional tests,
but the simple method described here works well enough and is efficient.
Collision responses can also be integrated into a constraint solver, depend-
ing on the given framework or physics engine.
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4 Geometry Generation

Hairstyles may have a complex structure and it is difficult to create them
with classic modelling procedures. When hair should behave dynamically
the creation process is even more demanding. In the last years several gen-
eration methods were presented. In [65] Yuskel et al. present hair meshes.
Their method is intended to simplify the task for artists by introducing
a work-flow that is analog to modeling polygonal surfaces. Another ap-
proach is multi-resolution editing [34], that constructs a level of detail rep-
resentation for hair manipulation. By subdividing clusters one can either
operate on single strands or at a higher level in the topology. Grabli et
al. [23] introduced a procedure that constructs hair styles based on pho-
tographs. Other methods are physical based, including proceedings that
are based on fluid flow [27].

4.1 Particle Creation

The software belonging to this thesis implements two generation proce-
dures. The first one distributes hair strands randomly on a scalp, the sec-
ond one imports a configuration created with the hair tool of Cinema4D
[41]. The former method iterates through scalp faces, and places a number
of wisps dependent on the face’s area. The random positions are selected
as described in the textbook GPU Gems 2 [49]. A more sufficient algorithm
would suppress density variations, such as the dart throwing algorithm [9]
or the one described in [34]. After placing the hair roots, subsequent parti-
cles are positioned by adding a scaled and interpolated normal to the root
particle. This yields straight hairs and is only reasonable when using long
hair with weak angular springs.

2 4 6

1 3 5
7 9

8 10

root tip

Figure 7: Hair vertices exported to a Wavefront Object File. Here faces are defined
counter-clockwise.

With the second method it is possible to create detailed hair styles. The soft-
ware provides tools that are based on items such as a brush and a comb,
parted with facile selection modes. In order to export a hair model from
Cinema4D, the software offers the ability to generate vertices along the hair
strands. These can be stored in several formats, including the Wavefront Ob-
ject File format. Hair strands that are stored to a wavefront object file have
a predefined layout. The number of segments n− 1 per strand can be spec-
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(a) Create character and
hairstyle

(b) Add collision sphere (c) Import in real-time ap-
plication

Figure 8: Character creation workflow

ified within Cinema4D. While the count of (indexed) vertices describing
one strand is 2n, the total amount of hair strands amounts 2n/nv, where
nv is the total number of vertices. The indices are ordered from root to tip,
as illustrated in figure 7. If the number of segments per hair is known, the
simulation can import object files and separate strands. Particles that are
placed at each second vertex, reproduce the original hair shape, please see
the red dots in figure 7. Figure 8 outlines the character creation work-flow.
After the character and hair-style has been designed, collision spheres can
be added to introduce collision handling. Afterwards, the scene is ready to
be imported into the application.

4.2 Particle Interpolation

To save computation time, particle positions can be used to produce more
than a single hair strand. Tariq [60] distinguishes between single strand
based interpolation (or clump based interpolation) and multi strand based in-
terpolation. Both methods create new particles based on existing ones. The
single strand based technique duplicates a strand several times and trans-
lates the new hairs by a random offset. As a result a wisp (or a clump) gets
constructed. The translation has to take place in the xy-plane of the local
coordinate frame of a hair strand. If strands are generated along the nor-
mals of a scalp mesh, the plane is obviously defined by the normal. When
an object file is imported however, the plane can be computed by finding
the three nearest vertices to the hair root and interpolating their normals.
Figure 9 shows both techniques.
Visual results of single strand based interpolation can be optimized by
manipulating the duplicated particles based on the particle speed, as de-
scribed by Choe et al. [8]. Choe et al. increase the wisp radius, the faster
it moves, to account for hair-air interaction. This scaling factor ξ also in-
creases towards the tip. It can be formulated as follows:

ξ = 1 + σ|~v| (22)
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(a) Single Strand Based Interpo-
lation

(b) Multi Strand Based Interpo-
lation

Figure 9: caption

Here σ is a monotonically increasing function of the distance to the root.
When increasing the wisp radius it is expedient to move the cross section
back along the speed direction. Otherwise an increment of the cross-section
would raise and a decrement would reduce the speed for a short moment,
which can result in flickering. Let c0 be the original and cv be the new centre
of the cross-section. Then cv can be expressed as:

cv = c0 − r0(ξ − 1)
~v

|~v|
(23)

Where r0 is the original wisp radius. These formulations are not based on
physical fundamentals, but afford sufficient visual results for real-time en-
vironments. Interpolation based on multiple strands consults three hairs to
place the particles of a new strand. Each attribute of a new strand, such as
velocity and mass, are interpolated values of those three hairs. To identify
three appropriate strands, hair roots can either be placed at scalp vertices
which allows one to apply the triangulation of the scalp mesh. Or, the De-
launay algorithm can be used to create a triangulation between roots.
Single strand based interpolation and multi strand based interpolation pro-
duce different visual results. The former approach can be used to simu-
late wisps, that occur due to hair friction. The latter method is useful for
soft hair styles, that appear voluminous with relatively few hairs. Which
method to employ is an artistic choice, one can also combine both methods.
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5 Rendering

Since hair fibers are very thin objects, they are often regarded as one dimen-
sional lines. Classic Bidirectional Reflectance Distribution Functions (BSDFs)
define a relationship between incoming irradiance and outgoing radiance
with respect to a surface normal vector. Various shading models are based
on this principle to determine the surface color of an object. Lines however
have an infinite set of normals and therefore different approaches for hair
rendering has been established. The next sections present three shading
models for hair rendering. The early one by Kajiya and Kay, the physical
based approach Marschner et al. introduced in 2003, and finally a model
that is artist oriented.

5.1 Kajiya and Kay’s Hair Model

In 1989 Kajiya and Kay presented a lightning model for human hair [30]
formed by a diffuse and specular component. While the specular com-
ponent was an adaptation of the Phong shading model for cylindrical sur-
faces, the diffuse component was derived of the Lambertian shading model.
Instead of using a single surface normal, Kajiya and Kay use the normal
plane to build a lightning model. This plane is defined by the point of
interest of the hair fiber x0 and the fiber’s tangent ~t. The lightning ~l and
view vector ~v, starting from x0, are then projected onto this plane, yielding
~vp and ~lp, where ~l and ~v are assumed to be of unit length. The vectors ~lp,
~t and ~lp × ~t span an orthonormal basis. Kajiya and Kay use this basis to
derive their shading equation. They use ~lp as normal for diffuse and ~vp as
normal for specular lightning. The original derivatives can be condensed
as follows:

LO = (Ψd + Ψs)⊗B (24)
LO =

(
cd · sin(~t,~l) + cs · cosm(~v, ~vp)

)
⊗B

where B is the brightness, m the shininess, Ψd the diffuse component, Ψs

the specular component and cd, cs are the diffuse and specular reflection
coefficients respectively. Here the trigonometric functions use the angle
between two vectors. The symbol ⊗ means piecewise vector multiplica-
tion. By calculating the appropriate input angles, this equation can be in-
terpreted as phong shading equation. This is fulfilled in the textbook Real-
Time Rendering [2]3:

3The book’s equation may differ slightly from this one, since the first printing of the 3rd
edition of Real-Time Rendering contained a typing error.
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cos(θi) = sin(~t,~l) =

√
1− (~l · ~t)2 (25)

cos(α) = max
(√

1− (~l · ~t)2

√
1− (~v · ~t)2 − (~l · ~t)(~v · ~t), 0

)
LO =

(
cd · cos(θ) + cs · cosm(α)

)
⊗B

Here cos refers to the clamped cosine function.
The hair model of Kajiya and Kay is still used widely, but has two major
drawbacks when compared to more advanced methods. First, the original
model is not energy conserving, which is important for physically based
rendering. Secondly, it disregards that hair is translucent and hence miss-
ing visual effects.
While the first drawback can be overcome by normalization, the second
one is inveterate. The normalization of bidirectional reflectance distribution
functions (BRDFs) can be done by dividing by the maximum of a function
called directional-hemispherical reflectance function. The latter function mea-
sures the amount of absorption a BRDF exhibits with a predefined input
direction. Is the value zero, all light is absorbed, a value of one means that
all light is reflected. Values higher than one indicate that the BRDF is not
energy conserving, because more light is reflected than originally shined
on the surface.
Let f be a bidirectional reflectance distribution function, then the corre-
sponding directional-hemispherical reflectance is defined as:

RΩ(l) =

∫
Ω
f(l, v) cos θdω =

∫ 2π

0

∫ π
2

0
f(l, v) cos θ sin θdθdφ (26)

where θ is the angle between surface normal and the outgoing light di-
rection and the Ω subscript indicates an integration over the upper hemi-
sphere. Since the shading model is defined over the entire sphere, RΩ has
to be modified. The adjusted function RO, here referred to as directional-
spherical reflectance, can be formulated as:

RO(l) =

∫
O
g(l, v) sin θtdω =

∫ 2π

0

∫ π

0
g(l, v) sin2 θtdθtdφ (27)

This function integrates over the entire sphere, where g is the distribution
function of the Kajiya and Kay shading model. The well-known integration
scheme of BRDFs is oriented toward the surface normal, the scheme here is
oriented toward the hair tangent, which is reflected in using sin θt instead
of cos θ, as illustrated in figure 10. sin θt equals cos θ, because:
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Figure 10: Illustration of the integration scheme. The red area visualizes the spec-
ular part of the phong BRDF, which is rotated around the hair axis.

cos(
π

2
− α) = cos(α− π

2
) = sinα (28)

cos θ = cos(|π
2
− θt|)

→ cos θ =

{
cos(π2 − θt) if θt ≤ π

2

cos(θt − π
2 ) otherwise

→ cos θ = sin θt

Equation 25 showed, that the shading model can be expressed as phong
shading term, which can be transformed to the distribution function g4:

g(l, v) =
cd
π

+
cscosm(α)

π
(29)

To calculate the maximum of RO it is sufficient to consider the specular
term only. Then, to guarantee energy conservation, the condition cd+cs ≤ 1
must be fulfilled. It is established, thatRΩ(l) for the phong BRDF reaches its
maximal value, when the light vector is equal to the surface normal, which
is also true for the g, since the distribution of the specular component is
a rotation of the phong distribution around the hair axis. Assuming, that
~l · ~t = 0 and cs = 1, cd = 0, one has:

cos(α) = sin(~v,~t) = sin θt (30)

Combining equations 27, 29, 30 yields:

RO(l)Max =
1

π

∫ 2π

0

∫ π

0
sin(m+2) θtdθtdφ (31)

4The original phong BRDF states, that f(l, v) = cd
π
+ cscosm(α)

πcosθ
. Modern approaches exclude

the division by cosθ, because it has no physical plausibility and causes the maximum of
RΩ(l) to be infinite. Hence, this BRDF could not be normalized. Physical plausible shaders
are discussed here [37]
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Exponent RO(l)Max Exponent RO(l)Max Exponent RO(l)Max

(1 19.7392) 8 8.47828 15 6.28219
2 15.5031 9 8.02101 16 6.08903
3 13.1595 10 7.63045 17 6.91265
4 11.6274 11 7.29183 18 5.75075
5 10.5276 12 6.99458 19 5.60146
6 9.68946 13 6.73092 20 5.46321
7 8.02364 14 6.49497 21 5.33472

Table 2: RO(l)Max function values for various exponents.

Solving this equation is not as easy as solving the equivalent term of the
original phong shading model. Computational software programs, such as
Mathematica are capable of deriving the general solution. In order to nor-
malize Kajiya and Kay’s model efficiently, one could pre-computeRO(l)Max

values and store relevant results in look-up tables or approximate the func-
tion. Table 2 lists function values for exponents from 0 to 21. The final
normalized shading model is expressed by:

LO =
1

RO(l)Max

(
cd · cos(θ) + cs · cosm(α)

)
⊗B (32)

Marschner et al. introduced a method for hair shading, which is energy
conserving and produces more realistic results.

5.2 The Marschner Shading Model

In their Paper [40] Marschner et al. exploited properties of dielectric cylin-
ders to derive a scattering function S for hair fibers. This function behaves
like a Bidirectional Scattering Distribution Function (BSDF) but is not defined
as ratio between radiance L and irradianceE, rather as curve intensity L̄ per
curve irradiance Ē. These units are one dimensional equivalents to L and E
and are chosen because a hair fiber is regarded as one dimensional object.
Further, S extends over the entire sphere, not only over the upper hemi-
sphere. The function considers three reflectance paths, that light can travel
through a hair. Figure 11 illustrates these paths. The first one, called R-path
contributes light that impinges on the surface of the hair and gets reflected
immediately. The TRT-path represents rays which get transmitted by the
hair, travel inside of the strand, are reflected at the backside and finally
transmitted again. This component produces a secondary highlight. The
TT-path covers light that is transmitted by the hair, travels inside of the hair
until it gets transmitted again. This component is crucial in backlighted sit-
uations. Figure 11 also illustrates tilted cuticle scales, that cause a shift of
the highlights by an angle α. The scattering function Sp(θi, θo, φi, φo) is a
4D transformation, that can be factored into a product of two 2D functions
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R
TRT

TT

Figure 11: Lightscattering within a human hair fiber

Mp(θi, θo) and Np(θd, φd). Where θi is the angle of inclination and φi the
azimuth of the incident light relative to the normal plane, which is perpen-
dicular to the hair axis. θo and φo are the angles to the outgoing direction,
respectively. The difference angles θd, φd are defined as θd = (θo − θi)/2
and φd = (φo − φi). Where P = {R = 0, TT = 1, TRT = 2} and p ∈ P
depends on the relevant path. Hence the complete scattering function can
be expressed as:

S(θi, θo, φi, φo) =
1

cos2 θd

∑
p∈P

Mp(θi, θo)Np(θd, φd) (33)

The division by cos2 θd projects the solid angle of incident beams onto the
hair surface. While M describes longitudinal scattering, N represents az-
imuthal scattering. After analysing measurement results Marschner et al.
discovered, that a normalized Gaussian density function g(x;σ2) can be
used to approximate Mp. This function should have its maximum when
θi = −θo shifted by an angle αp due to the tilted cuticle scales, see figure 11.
Let θh be θh = (θi + θo)/2 and βp be the longitudinal width (or standard
deviation) then the various M functions are defined as:

Mp(θh) = g(θh − αp, β2
p) (34)

or:

Mp(θh) =
1

βp
√

2π
e
− (θh−αp)2

2β2
p (35)

Assuming a hair fiber has a circular cross section, which is illuminated ei-
ther complete or not at all, the azimuthal scattering functions can be de-
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rived from principles of energy conservation. The next section will present
approximations of the Np-components, figure 14 of section 5.3 gives a vi-
sual impression of the function values. Let Ē be the irradiating power per
unit length (curve irradiance). Then the outward intensity per unit length
(curve intensity) L̄ equals Ē in order that:

L̄p(φd)dφp = Ap(h)
1

2
Ēdh (36)

where dh is an interval of the incident beam and dφp the angle, resulting
when this part of the beam leaves the hair, see figure 12. In fact, equation 36
equates the energy of L̄ with the energy E. Because Ē is one dimensional,
it corresponds toE multiplied with the fiber’s diameter. When considering
a unit circle, the factor 1

2 arises. The function Ap(h) evaluates the impact of
the different paths on the intensity, it accounts for attenuation by absorp-
tion as well as attenuation by reflection. When regarding the cross section
as a unit circle, h is the distance between the ray with width dh and the
centre of the circle. To calculate the amount of light, that travels towards
an observer, it is necessary to solve h for each possible path. Afterwards, it
is possible to compute the corresponding absorption. A bundle of rays that
enter the circle by this offset h will leave it, so that the outgoing directions
are spread over an angle dφ, in radians. Because a circular cross section
is presumed, the described conception does not depend on the actual val-
ues of φi or φo. The ratio between curve intensity and curve irradiance
expresses a distribution function parametrized by φd:

L̄p(φd)

Ē
=

1

2
Ap(h)

∣∣∣∣ dhdφp
∣∣∣∣ (37)

Both, θd and φd are required to compute h and dφp. Summating these func-
tions for p ∈ P yields N :

N(θd, φd) =
∑
p∈P

1

2
Ap(h)

∣∣∣∣ dhdφp
∣∣∣∣ (38)

This function can be solved by computing h and the derivative dh
dφp

. Figure
12 illustrates that the angle between an incoming and outgoing ray ∆φp is:

∆φR = −2γi (39)
∆φTT = 2γt − 2γi + π

∆φTRT = 4γt − 2γi

Note that while φd is the actual angle between the directions, ∆φp repre-
sents the angle dependent on γi, γt. When the output of η′(θd) is the index
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TRT

Figure 12: Scattering from a unit circle

of refraction with reference to the normal plane5, γt can be formulated as
γt = arcsin( sin(γi)

η′ ) and γi = arcsin(h). In this way ∆φp can be expressed
as a function depending on h. With the condition ∆φp − φd = 0, which
means that ∆φp must result in a change of direction equal to φd, one can
proceed to solve h. The resulting equation:

2p · arcsin(
h

η′
)− 2 · arcsin(h) + pπ − φd = 0 (40)

can be approximated using Taylor series or similar methods. Marschner et.
al presented the following equation to approximate γt:

γt =
3c

π
γi −

4c

π3
γ3
i (41)

to gain a cubic function6 ∆φ̂p that resembles ∆φp:

∆φ̂p(γi) = −8pc

π3
γ3
i +

(
6pc

π
− 2

)
γi + pπ (42)

In these functions c is defined as c = arcsin( 1
η′ ). Now h can be computed

by calculating ∆φ̂p − φd = 0 and taking the arcsines of the roots. There
will be one root when solving h for the R and TT component, but one
or three roots when solving the TRT component. If the TRT component

5This index is called Bravais index and can be calculated using θd:
η′(θ) = cos(θ)(η2 − sin2(θ))−

1
2 where η is the refractive index of hair.

6Cubic functions are relatively easy and efficient to solve. Solving methods, accompanied
by an interesting historical background, are documented by Dunham [16]
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provides three roots or that is to say three sub-paths, each of them has to be
considered separately. Using the chain rule for finding derivatives, ∆φ̂p(γi)
can also be used to get dh

dφp
:

dh

dφp
=

(
dφp
dh

)−1

≈
(

(∆φ̂p ◦ γi)′(h)
)−1

(43)

while:

(∆φ̂p ◦ γi)′(h) =
1√

1− h2

(
−24pc

π3
γ2
i +

6pc

π
− 2

)
(44)

Up to now, methods to compute h and dh
dφp

of equation 38 have been pre-
sented. The last step is to compute the absorption factors Ap(h). There are
two effects that result in absorption, when considering a specific path. First,
volume absorption in the fiber interior and second, Fresnel reflection, that
determines what amount of light takes the current path. Let Fp(γt) account
for the Fresnel effect and T (σ, γt) = exp(−2σ cos γt) account for volume
absorption, where the absorption coefficient σ is a color vector whose val-
ues range from zero to∞ and 2 cos γt is the path’s inner length7. Then the
absorption functions can be expressed as:

AR(h) = FR(γt) (45)
ATT (h) = FTT (γt)T (σ, γt)

ATRT (h) = FTRT (γt)T (σ, γt)
2

By expanding coefficients of reflection, the functions Fp can be gained. The
governing equations are explained in textbooks [21]. Marschner proved
[39] that the refractive index of the parallel coefficient differs from the one
of the perpendicular coefficient. The coefficients of reflection are:

rs =
cos(γ1)− η2

η′ cos(γ2)

cos(γ1) + η2

η′ cos(γ2)
(46)

rp =
cos(γ2)− η′ cos(γ1)

cos(γ2) + η′ cos(γ1)

Here rs is s-polarized and rp p-polarized, where γ1 is the angle between sur-
face normal and reflected ray and γ2 the angle between normal and trans-
mitted ray.
Finally, Marschner et al. presented two implementation oriented optimiza-
tions. First, the NTRT -component has caustics at certain angles. These

7In [40] Marschner et al. mistakenly state that the inner path length is 2+2 cos(2γt), figure 30
in appendix A.3 illustrates that this length has to be 2 cos(2γt)
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caustics are removed and replaced by a gaussian density function.To main-
tain continuity, the gaussian is faded over a range of incidence angles. The
width of the gaussian density function and the fade range are input param-
eters to the shading model. Second, because hair strands are rather ellip-
tical than circular, an eccentricity parameter has to be integrated. Eccen-
tricity is approximated by changing the refractive index of hair. Following
formulas were presented:

η∗1 = 2(η − 1)a2 − η + 2 (47)
η∗2 = 2(η − 1)a−2 − η + 2

η∗(φd) =
1

2
((η∗1 + η∗2) + cos(2φd)(η

∗
1 − η∗2))

η∗ is the adapted index of refraction and a is the eccentricity parameter. In
order to evaluate the scattering function S, the curve radiance L̄ has to be
solved:

dL̄ = S(θi, θo, φi, φo)dĒ (48)
dĒ = L̄i(ω) cos θidω = DLi(ω) cos θidω

⇒ L̄ =

∫
O
S(θi, θo, φi, φo)dĒ(θi, φi)dω

= D

∫
O
S(θi, θo, φi, φo)Li(ω) cos θidω

where D is the diameter of hair fibers and the subscript O indicates, that
the integral extends over the entire sphere. L̄ can be used when hair is
rendered as line primitive. Because the simulation that is discussed here
generates surfaces, the radiance L is derived:

S(θi, θo, φi, φo) =
dL̄

dĒ
=
D · dL
D · dE

=
dL

dE
(49)

⇒ dL = S(θi, θo, φi, φo)dE

dE = Li(ω) cos θidω

⇒ L =

∫
O
S(θi, θo, φi, φo)E(θi, φi)dω

=

∫
O
S(θi, θo, φi, φo)Li(ω) cos θidω

When area lights are neglected, L̄ and L can be expressed by adding up the
radiance for each point light source:
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L̄ = D

nl∑
k=1

S(θi, θo, φi, φo)EL(θi) cos θi (50)

L =

nl∑
k=1

S(θi, θo, φi, φo)EL(θi) cos θi

Here the irradiance EL is measured in a plane perpendicular to the light
source and nl is the number of point lights.
The shading model of Marschner et al. is more sophisticated than the one of
Kajiya and Kay and produces natural as well as energy conserving results.
A drawback however is that control parameters are hardly comprehensible
and understandable.

5.3 An Artist Friendly Hair Shading System

(a) Red-colored hair (b) Blue-colored hair (c) Pink-colored hair

Figure 13: Using the artist friendly shading system by Sadeghi et al., different hair
looks can be created within seconds.

Sadeghi et al. recognized, that the shading model by Marschner et al. is
cumbersome and developed a system [56] that places more value on con-
trollability than on physical correctness. By intention, they created a model
which can produce realistic and unrealistic results, depending on the con-
cerns of art directors. They approached this task by defining a pseudo scat-
tering function S′ with artist friendly controls that approximates Marschners
scattering function. The controls are divided by the possible paths:

• R: Color, intensity, longitudinal position and longitudinal width

• TT: Color, intensity, longitudinal position, longitudinal width and az-
imuthal width

• TRT (without glints): Color, intensity, longitudinal position and lon-
gitudinal width

• Glints: Intensity and azimuthal width
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(a) N ′R-Component (b) N ′TT -Component (c) N ′TRT -Component

Figure 14

Figure 13 illustrates three different parameter configurations. Like the scat-
tering function described by Marschner et al., S′ is separated into an az-
imuthal function N ′ and a longitudinal function M ′:

S′(θd, φd) =
1

cos2 θd

∑
p∈P

CpIpM
′
p(θd)N

′
p(φd) (51)

Here Cp corresponds to the color of a given path and Ip to the respective
intensity. The azimuthal functionN ′ does not depend on θ, because Fresnel
terms are ignored for simplicity. Sadeghi et al. also use gaussian functions
to approximate M ′, but instead of unit area probability density functions
they adopt unit height functions. The difference between the two is, that
the latter have unit height at the maximum, whereas the area integral of the
former functions is one. While unit height probability density functions do
not have to be energy conserving, their advantage is that they are more
controllable, because changing the width will not affect the brightness of
the highlight. The M ′ functions are defined as:

M ′p(θd) = g′(θd − αp, β2
p) (52)

g′(ν, x) = e−πν
2x−2

The azimuthal N ′p functions are visualized in figure 14. Each of them is
motivated by the azimuthal functions of Marschners shading model. They
can be formulated in the following way:

N ′R(φd) = cos(
φd
2

) (53)

N ′TT (φd) = g′(π − φd, ϕ2
TT )

N ′TRT (φd) = cos(
φd
2

) + Igg
′(φg − φd, ϕ2

g)
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Where ϕTT , ϕg are azimuthal width parameters, φg is the azimuthal posi-
tion of glints and Ig is the intensity of glints. The appearance of glints can
be randomized by choosing different φg values between 30◦ and 45◦ for
each strand. Sadeghi et al. also show how the Dual Scattering model of
Zinke et al. [72] fits into the artist friendly environment. For performance
reasons, multiple scattering has not been implemented in the course of this
thesis. Self-shadowing however has been taken into account, as described
below.

5.4 Shadows

Shadows are important for the realism of virtual scenes. Scenes without
shadow do not only feel unnatural, they are lacking an important propor-
tion and spacing indicator. Hair can be regarded as a volumetric object and
in order to perceive it as such, self-shadowing is crucial. Further, hair casts
shadow on its surroundings and vice versa. Classic shadow mapping algo-
rithms can be used for shadow casting from the environment to the hair
(environment to hair), but are impractical for self-shadowing or hair to envi-
ronment casting, because it performs a binary test, that determines whether
a pixel is occluded or receives no shadow. In hair volume however, a large
number of strands cast shadows, resulting in a variety of shading intensi-
ties. This cannot be realized with typical shadow mapping. Opacity shadow
maps are an adaptation of shadow maps for volumetric objects. They were
presented by Kim and Neumann in 2001 [33] and have since been used in
hair rendering implementations. Analog to classic shadow mapping, opac-
ity shadow maps apply renderings of the scene from the light’s position.
But instead of storing depth values, opacity values are stored at different
depths from the light. This requires multiple rendering passes, depending
on the granularity of depth levels. Storing opacity values has the advan-
tage, that they can produce different shadow intensities and by association
reduce the perceptibility of aliasing. In 2008 Yuksel and Keyser presented
deep opacity maps [64], an updated version of opacity shadow maps. In con-
trast to opacity shadow maps, deep opacity maps do not separate the depth
range of the hair volume in uniform layers. The layer density of deep opac-
ity maps decreases with increasing depth. The major benefit of deep opac-
ity maps is however, that those layers are adjusted to the the hair shape. A
deep opacity map is generated in two succeeding steps, A and B. In step
A, a common shadow map is rendered. The second step uses this map to
determine at which depth z0 the first opacity layer begins. Subsequent lay-
ers are placed at the depth values z1..zk, where K is the number of opacity
layers and 0 ≤ k < K. One could also imagine, that after a light ray hits
the first hair, it inducts the first layer, which has a fixed width and is fol-
lowed by subsequent laysers. In step B, the hair is rendered a second time
from the light’s position. At each pixel-shader invokation a look-up at the
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(a) Opacity shadow map
layers

0
1

2

3

(b) Deep opacity map lay-
ers

Near Plane

Far Plane

(c) View frustrum setup

Figure 15: While opacity shadow maps use regular spaced layers, deep opacity
maps use fewer layers that are adjusted to the hair shape. On the right
view frustrum adaptations for the generation process are depicted.

shadow map returns z0 and defines the fragment depth relative to the hair
volume, with respect to the light. Each fragment can be associated to a layer
by evaluating its depth. Let z be the depth of the current fragment, then the
fragment is associated with layer l, if zl ≤ z < zl+1, where 0 ≤ l < K − 1.
This implies that the camera is looking along the positive z-axis. Each chan-
nel of a deep opacity map represents the opacity values of one layer. Hence
up to four opacity layers can be stored in one RGBA-texture. A texel in the
map is filled by adding the opacity value of hair to the channel that repre-
sents the layer associated with the fragment and subsequent channels. This
accumulation pattern can be achieved by utilizing additive blending.
More than four layers can be used when employing multiple render targets
or performing multiple draw calls. Because the frequency of opacity layers
can be chosen to be highest at locations where shadow is fading in, the total
amount of layers can be reduced. To achieve this, the layer width zl+1 − zl
increases with progressing l. As a result deep opacity maps require less
layers than opacity shadow maps. The assembly of layers is illustrated in
figure 15.
The insertion of shadow in the final image happens in a similar way to
other shadow mapping techniques. While hair is rendered from the cam-
era’s point of view, the pixel-shader evaluates the projection of the frag-
ment onto the shadow and deep opacity map. A look-up at the shadow
map provides z0, which is enough to associate the fragment to an opacity
layer, and by implication to a channel of the deep opacity map. A tex-
ture look-up at the deep opacity map then provides an opacity value for
the fragment in question. Eventually the transmittance value τ can be ex-
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pressed as:
τ = exp(−Ω) (54)

Here Ω denotes the opacity. Typically the final color value is scaled by
the transmittance value τ to receive shaded regions. Since this technique
relies on sampling, aliasing artifacts are compulsory. In order to use the
resolution of the deep opacity map efficiently, the view frustrum can be
adapted to the hair volume, when rendering from the light’s point of view.
When rh is the maximal distance of a particle to the hair origin and d is the
distance between the light source and the hair origin, the view frustrum can
be configured as following: wn = hn = 2dh(1− rh

d ), dn = d−rh, df = d−rh.
Where wn, hn are the width and height of the near plane, dn is the distance
from the light source to the near plane and df the distance to the far plane,
see figure 15c.
Another technique for volumetric objects, called adaptive volumetric shadow
maps (AVSM), were introduced by Intel Corporation in 2010 [17, 57]. Be-
cause Intel’s reference implementation of AVSM required 9.7ms per frame,
deep opacity maps have been used here. Performance implications and
implementation details of deep opacity maps are discussed in section 6.3.
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6 Implementation

The application provided with this thesis compares various techniques and
demonstrates how the capabilities of modern hardware can be exploited.
The implementation is based on DirectX 11 and utilizes the Qt SDK [10]
for GUI creation and Assimp [22] in order to import various 3D file for-
mats. The resulting software is a Win32 application, the programming lan-
guage has been C++ and shaders were developed in HLSL, more precisely
with shader model 5. Significant parameters are mapped to graphical in-
put widgets, to allow comfortable testing. Some parameters are passed as
shader macros and hence involve a shader recompilation, which is executed
on the fly if necessary. Screenshots of the application and of each input
element are attached in appendix A.4, A.6. The interpolation is based on
single strands, as earlier discussed in section 4.2.

6.1 General-Purpose GPU

Many real-time applications are limited in their possibilities due to a high
CPU workload. Since programmable GPUs were introduced in 2001, the
processing capabilities of shaders increased steadily, as described by Mon-
trym and Montrym [43]. This allows developers to shift work from the
CPU to the GPU, releasing processing time for other tasks. One has to con-
sider that while the CPU is a serial processor, graphic cards perform highly
parallel, which has design as well as performance implications. GPUs are
optimized to execute several thousand threads simultaneously, by using
single instruction, multiple data (SIMD) control mechanisms. Hence, inco-
herent branching per thread results in performance penalties, see [49]. To
implement algorithms designed for GPUs, either the graphics pipeline or
the general purpose interface (GPGPU) of modern graphic cards can be uti-
lized, see [46]. Microsoft enhanced DirectX 118 with a GPGPU API called
DirectCompute. Adopting GPGPU Programming has the benefit that each
thread has access to each input element and a shared memory, which be-
longs to a group of threads. These access patterns are hard to implement
and are often expensive, when using the normal graphics pipeline. Simi-
lar to common shaders, compute shaders can be bound to the graphics card.
Then the pipeline is also referred to as the computation pipeline [69].
The simulation presented here implements reference algorithms running
on the CPU and corresponding variants that rely on DirectCompute. Per-
formance differences between the CPU an GPU implementation are dis-
cussed in section 7. After their generation, particles are stored in an array-
like data structure. The reference implementation operates on this structure
and modifies entries with each simulation step. Subsequently the content is

8Even though Microsoft released DirectCompute with DirectX 11, it is also compatible to
DirectX 10 graphic cards.
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updateBuffer()

Data Structure
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simulate()

Render Pipeline

(a) CPU based simulation

dispatch()

Structured Buffers

VB

Render Pipeline

(b) GPU based simulation

Figure 16: Dataflow comparison of GPU and CPU based implementation.

mapped to a vertex buffer and serves as an input to the rendering pipeline.
This implies, that the vertex buffer must be send to the GPU after each up-
date. Figure 29a illustrates the dataflow of the reference implementation.
While red arrows depict CPU operations, green arrows visualize GPU op-
erations.
The GPU implementation stores generated data into structured buffers and
provides it to the computation pipeline via unordered access views. Because
the vertex buffer is also bound to the computation pipeline, one dispatch
call suffices to update particle positions as well as the vertex buffer, see
figure 29b. Here the vertex buffer stores particle positions, which are trans-
formed to geometry within the rendering pipeline, as with the CPU imple-
mentation. Because the CPU does not operate on particles, no particle data
has to be transferred between CPU and GPU.
DirectCompute provides a thread addressing system. Threads hold a 3D
coordinate within their thread group. Thread groups on the other hand have
a 3D coordinate on their own. This helps developers to realize access pat-
terns. Regarding a fluid simulation for example, the 3D coordinates could
be used to access entries in a grid. The simulation discussed here creates
one thread group per wisp and one thread for each hair. If the y-coordinate
of a thread equals zero, a guide hair is simulated and results are stored to
a group shared memory. Otherwise, the shader accesses the group shared
memory and creates single strand interpolated values. Since threads are
working with the same data in parallel, the group shared memory has to
be synchronized after the guide hair has been simulated. In pseudo-code,
the compute shader looks as follows:

StructuredBuffer<PerHairData> HairBuffer; // Input
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RWStructuredBuffer<Particle> ParticleBuffer; // Input
RWBuffer<float4> VertexBuffer; // Output

groupshared Particle guide[PARTICLES_PER_HAIR]; // Cache

[numthreads(1, WISP_NEIGHBORS+1, 1)]
void CSSimulateHair( )
{

if(DispatchThreadID.y == 0)
simulateHair();

GroupMemoryBarrierWithGroupSync();

if(DispatchThreadID.y > 0)
createInterpolatedStrand();

}

6.2 Tessellation

Up to this point hair has been represented by particles. Section 3 described
techniques to simulate these. To render particles, the render pipeline gen-
erates actual strands out of them. The data enters the pipeline as a control
point patchlist. In this section, the expressions particle and control point will
be used interchangeable, since both refer to the same data. The input as-
sembler forwards the data further to the vertex-shader, which performs the
multiplication with the model matrix. Then, control points are passed to
the tessellation stage, where they are converted to actual hairs. Figure 17
depicts the dataflow of this generation process.

Vertex
Shader

World
Transform

Hull
Shader

Tessllator

Domain
Shader

Factors
Compute
Tangents 

Evaluate
Splines

Figure 17: Dataflow through the tessellation stages

Control points entering the tessellation stages are evaluated and a tessel-
lated triangle strip is passed on to proceeding stages. The hull-shader pro-
gram is used to compute the tangents of control points and to forward
them to the tessellator. Since one control point patch can cover a maximal
amount of 32 points, this simulation can run with up to 31 segments per
hair. The tessellator creates 3f + 1 vertices for each strand, where f is an
adaptable tessellation factor. By evaluating conditions such as distance of
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a hair strand to the camera or visibility, the tesselation factor and hence the
level of detail can be regulated. This is achieved by using the following
patch constant function:

ConstantFunction( )
{

InsideTessellationVertical = EdgeTessellationLeft
= EdgeTessellationRight = 1;

InsideTessellationHorizontal = EdgeTessellationTop
= EdgeTessellationBottom = f;

}

The domain-shader is invoked per tessellated vertex. Its general task is to
evaluate parametric surfaces or curves to position vertices accordingly. This
principle is adopted to form hair fibers based on a quadratic domain. Spec-
ifying the domain type to be a quad instead of isoline produces two dimen-
sional hairs. This has the advantage that strands appear equally thick from
different distances and that fewer strands create voluminous hair. Because
hair is represented by a limited number of particles, segments are rather vi-
sualized by splines as by straight lines. Cubic hermite splines connect two
control points with each other, given that the tangent of both points is
known. An arbitrary amount of control points can be connected with piece-
wise cubic hermite splines and thus they are suitable to describe strands by
a set of particles. More precisely, Catmull–Rom splines are used in this sim-
ulation, according to the method with witch the tangents were chosen in
the hull-shader. While various techniques to create splines are presented in
[55], Yuksel et al. [66] discuss Catmull–Rom splines in detail. The domain-
shader receives three parameters: The domain location, the control point
patch and hair specific attributes. The first defines the two dimensional lo-
cation of the new vertex within the domain. Using the x-coordinate of this
parameter as a progress variable, it is easy to calculate a spline polynomial.
Let ns be the number of tessellated hair segments and ws = 1

ns
the width of

a segment in domain coordinates, then the progress ts between two control
points is given by:

ts = bx− bx · nsc · wsc · ws (55)

where bxc .= x − (x mod 1) is the floor operator. This variable can be used
to calculate the hermite basis functions, which are defined as follows:

p(ts) = h0(ts)pa + h1(ts)pb + h2(ts)ma + h3(ts)mb (56)
m(ts) = h′0(ts)pa + h′1(ts)pb + h′2(ts)ma + h′3(ts)mb
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h0(t) = 2t3 − 3t2 + 1 h′0(t) = 6t2 − 6t

h1(t) = 3t2 − 2t3 h′1(t) = 6t− 6t2

h2(t) = t3 − 2t2 + t h′2(t) = 3t− 4t+ 1

h3(t) = t3 − t2 h′3(t) = 3t2 − 2t

Here pa, pb is the position of the first and second control point respectively
and ma, mb are the corresponding tangents. While p(ts) yields the position
of new vertices, m(ts) yields their tangents. Within a control point patch
pa has the index bx · nsc and pb the same index plus one. Since the x-axis
is used as a progress variable, one can imagine that the domain becomes
stretched to form a single hair, as depicted in figure 18. After the hermite
basis functions have been interpreted, the hair surfaces are folded and cor-
relate to a Catmull-Rom spline.

(0,0)

(0,1) (1,1)

(1,0)

(0, 1) (0.2, 1) (0.4, 1) (0.6, 1) (0.8, 1) (1, 1)

(0, 0) (0.2, 0) (0.4, 0) (0.6, 0) (0.8, 0) (1, 0)

Figure 18: The x-coordinate of a vertex in domain space is used as a progression
variable. Hence, strands are stretched along the x-axis.

To create the impression that hair strands are three dimensional rather than
flat, hair surfaces are oriented towards the camera. Let dh be the diameter of
a hair strand, mp the tangent of the vertex of interest and cv the view vector
of the camera in world space. Then the surfaces are spanned by translating
vertices by vt = (y − 0.5)(cv ×mp)dh. Due to the fact that y − 0.5 is either
−0.5 or 0.5, two vertices at the same progress are each translated by the
half diameter in opposite direction. Finally the domain-shader performs
operations to reduce the amount of computations at the pixel-shader. These
are mainly related to texture look-ups, as further explained in section 6.6.2.

6.3 Deep Opacity Maps

Section 5.4 described that deep opacity maps are able to reproduce hair
to environment shadow casting as well as self-shadowing. One could also
argue that environment to hair casting is possible by adding high opacity
values to the map, while rendering environmental objects or the charac-
ter’s body. However, using high opacity values would introduce intensive
shadows, which may be unsuitable. Low values on the other side intro-
duce artefacts as pictured in figure 19a. These artefacts can be reduced
by employing percentage-closer filtering [20], see figures 19b and 19c. As
mentioned in section 5.4 one RGBA texture suffices to store four opacity
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(a) Deep opacity
maps only, with
no filtering

(b) Deep opacity
maps only, with
pcf radius 5 and
36 samples

(c) Deep opacity
maps only, with
pcf radius 6 and
49 samples

(d) Deep opacity
maps and simu-
lated absorption,
each with pcf
radius 6 and 49
samples

Figure 19: Shadow artefacts and the use of filtering

layers. Here three opacity layers were stored in one texture together with
hair depth values. This has performance benefits in the context of filter-
ing, since depth and opacity sampling is applied in one step. To avoid
artefacts due to a low depth resolution, see figure 20a, the DXGI_FORMAT
of the deep opacity map should provide one channel with at least 16 bit.
A DXGI_FORMAT_R16G16B16A16_UNORM texture has been used here,
which requires a scaling of opacity values to the range from zero to one.
Storing depth values within the deep opacity map also allows the efficient
implementation of additional shadow mapping techniques, which require
a second depth buffer of the complete scene.
Performance critical applications may demand faster algorithms than deep
opacity mapping. On that account a second technique, essentially a simpli-
fication of deep opacity maps, has been implemented. It requires a depth
map from the light’s point of view and interprets the difference between
these depth values to projected depth values, from the eye’s point of view,
as absorption values. This approach has already been used to render translu-
cent materials [19]. It is very similar to shadow mapping but evaluates the
differences in depth, rather than performing a binary test. The costs of
a second draw call of the hair structure are saved, because no DOM-layers
are needed. In contrast to deep opacity mapping, absorption based shadow
mapping can be used for environment to hair shadow casting without intro-
ducing artefacts. A disadvantage is however, that strands are assumed to
be spread evenly within the hair volume. Since this is not true for most
scenes, shadows might appear less natural as with deep opacity mapping.
By default the simulation described here uses DOM for self and hair to en-
vironment shadow casting, and the absorption based approach for environ-
ment to hair shadow casting.
It has also been tested to replace percentage-closer filtering by implement-
ing screen-space soft shadows. Screen-space soft shadows [25] involve the
rendering of shadows to a texture which is blurred, usually by applying a
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(a) The hairline above the
eye shows shadow arte-
facts due to a 8 bit depth
buffer.

(b) Screen-space blurring
affects the image qual-
ity. Left with, right
without blur.

(c) Shadow-bleeding due
to screen-space blurring

Figure 20: Further shadow artefacts

Gaussian kernel, and multiplied with the color buffer. During the course
of this, two different artefacts appeared, making them deficient. Firstly,
the human eyes are specialized in identifying differences in light inten-
sity. As it is likely that the kernel radius covers multiple hairs, intensities
are blurred over the hair volume. The result is that hair seems to be out
of focus, see figure 20b. Figure 20c illustrates the second artefact, which
is shadow bleeding: Shaded regions near to regions without shadow lose
their shading, while unshaded regions falsely receive shadow.

6.4 Anti-Aliasing

Since hair strands are thin fibers, comparable to one dimensional lines,
aliasing effects are strongly noticeable. They occur because of the lim-
ited sample rate during rasterization. Within the scope of this thesis, two
anti-aliasing techniques have been tested. Fast Approximate Anti-Aliasing
(FXAA), and multisample anti-aliasing (MSAA). Where the former one oper-
ates on the final output image and can thus be regarded as post-processing
filter, MSAA supersamples the depth and stencil buffer. To implement
FXAA the scene has to be rendered to a texture, which then is drawn onto
a fullscreen quad. While the texture is rendered to the quad, the function
FxaaPixelShader is called once per pixel to reduce aliasing [38]. This tech-
nique has been used in several high-class computer games since 2011[11],
because it is efficient, works seamlessly with deferred rendering and per-
forms well on most scenes. MSAA shades each pixel once but samples
multiple depth and stencil values to encounter aliasing. This method is
provided by most graphic cards and can be enabled with few DirectX or
OpenGL interface calls. MSAA produces excellent results but is less effi-
cient than FXAA and cannot be easily combined with deferred shading,
because the lightning pass can not be anti-aliased. The tests showed, that
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(a) (b) (c) (d) (e)

Figure 21: A wisp of hair is rendered with different anti-aliasing techniques. Fol-
lowing techniques were used: (a) no anti-aliasing, (b) FXAA with de-
fault settings, (c) FXAA with high quality settings, (d) MSAA with four
samples and (e) MSAA with eight samples.

FXAA has quality issues with the delicate nature of hair styles. Dithering
effects were even visible when using quality preset 39, the highest qual-
ity level of FXAA 3.11. MSAA on the other hand performed as expected.
Figure 21 compares various MSAA and FXAA configurations. Image 21a
shows a rendering of some hairs without any anti-aliasing. 21b applies
FXAA with default, 21c FXAA with preset 39 quality. Image 21d and 21e
show strands rendered with 4 MSAA samples at quality level 2 and 8 sam-
ples at quality level 4 respectively. At a resolution of 1706x979 the ren-
dering process with default FXAA took 0.458ms longer than without anti-
aliasing. High quality FXAA took 0.814ms longer. The MSAA configu-
ration which produced image 21d took 3.333ms and the configuration to
produce image 21e 6.356ms longer. These values have been averaged over
a period of 2 minutes and repeated several times. Measurement methods
will be further discussed in section 7. A comprehensive summary of anti-
aliasing techniques was given at Siggraph 2011[29].

6.5 Integration into frameworks

In order to integrate hair simulations into a framework or engine an easy
representation is desirable. The optimal solution would add hair support
to existing characters without further modifications. Since most systems
rely on a scene-graph, hair nodes are required. Would such a hair node be
attached to the character node, then all character transformations would also
be applied to the hair. This might seem proper, but would result in inelas-
tic hair which imitates the character’s motions. If only root particles are
attached to the character instead, then the remaining strands are dragged
behind as with real hair. To achieve this, one can add a character wrap-
per node to the scene graph which is parent to the character as well as the
hair node. Further, the moment that the character is moving, according
transformations must be applied to the hair’s root particles. While wrap-
per nodes work on stationary grounds or in isolated moving objects such
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as trains, they inherently do not cover opposing wind effects, occurring in
open moving objects like convertibles. Opposing wind can be addressed
by placing the hair node further upwards in the scene-graph, which is only
possible when the complete hair is subject to opposing wind, or by intro-
ducing additional external forces.
The implementation discussed here possesses a character (actor) class which
completely abstracts hair interfaces. The class diagram in figure 22 outlines
this structure.

Collision Sphere

Position : Vector3

Radius : Number

Hair

Node : SceneNode

newAttr : Integer

createFromScalp()

createFromHairMesh()

move()

rotate()

simulate()

Character

Node : SceneNode

loadFromFile()

move()

rotate()

simulate()

Renderable

<<interface>>

getTransform()

getRenderContext()

getGeometry()

<<realize>>

10..*

10..*

GuideHair

Particles : MassPoint[]

Neighbors : Vector3[]

11..* SceneNode

objects : Renderable[]

childs : SceneNode[]
0..*

0..*

Figure 22: Schematic class diagram of hair related classes.

Characters are created by calling the loadFromFile() method, which reads
various 3d formats and detects whether a scalp or hair mesh is present.
Following this, either createFromScalp() or createFromHairMesh() gets called.
Finally the accomplished wrapper nodes gets attached to the scene-graph.

6.6 Optimizations

6.6.1 Stream-Out

With Direct3D 10 the geometry-shader and the stream output pipeline were in-
troduced. The stream output pipeline enables DirectX to stream vertices
to a buffer instead of the rasterizer. On subsequent draw calls this buffer
can be bound as an input vertex buffer. Because all vertex, hull, domain
and geometry-shader operations were already applied before sending ver-
tices to the buffer, the capabilities of the stream ouput stage can lower GPU
operations, when multiple render passes are necessary. If a high amount
of vertices is streamed out however, the buffer size can overcharge the
graphic card. This can happen quickly, because vertices are not stored
in a space-saving arrangement and vertices can occupy a relatively large
amount of space, depending on the pixel-shader input requirements. The
pixel-shader inspired by Marschner et al. as well as the pixel-shader in-
spired by Sadeghi et al. require 96bytes per fragment. Assuming that each
hair is represented by 100 triangles, and that a hairstyle consists of 30.000
hairs, then the buffer already occupies 288MB. The simulation discussed
here actually performed faster without using stream-output buffers.
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6.6.2 Look-Up Textures

Look-up tables are a common instrument to reduce the number of cal-
culations by storing precomputed function values. Look-up Textures are
the equivalent to GPU programming and have been utilized to reduce the
workload of the Marschner and Artist Friendly hair shader. Otherwise,
both would be computationally excessive, especially the former one. When-
ever a re-computation is necessary due to the change of a shading param-
eter, the look-up textures are updated on the fly. The shading model of
Marschner et al. is implemented by using three look-up textures, which are
similar to the two described by Nguyen and Donnelly [49]. The first texture
stores MR,MTT and MTRT values to the RGB color channels and a value
related to θd to the alpha channel. To fetch texels, sin θi is mapped to u-
coordinates and sin θo is mapped to v-coordinates. Accessing the textures
by sines instead of actual angles avoids expensive inverse trigonometric
functions, because of the following:

sin θi = ~l ◦ ~t (57)
sin θo = ~v ◦ ~t

~l⊥ = ~l − ~t sin θi

~v⊥ = ~v − ~t sin θo

cosφd =
(~l⊥ · ~v⊥)√

(~l⊥ ·~l⊥)(~v⊥ · ~v⊥)

(a) M -components mul-
tiplied by projection
term in RGB-channels,
θd related term in alpha
channel

(b) NTT -component in
RGB-channels, NR-
component in alpha
channel

(c) NTRT -component in
RGB-channels

Figure 23: Look-up textures used to implement the shading model by Marschner
et al. The background of figure a and b is dark grey, such as on the right
side of figure b. This color is visible whenever the value of the alpha
channel is low.
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In this manner all required input angles are computed efficiently. Also,
these computations can be applied within an arbitrary shader program, as
soon as strands are tessellated. The values of the longitudinal functions
MR,MTT ,MTRT are multiplied by cos θi/ cos2 θd to account for the solid
angle projection and the projection of the irradiance (see equation 33 and
50 earlier). The value of the alpha channel (2|θd|/π) is mapped to the v-
coordinate of the second and third look-up texture, where the factor 2/π
scales |θd| to a range from zero to one. |θd| is chosen instead of θd for the
reason that the function is symmetric. The v-coordinate of the second and
third texture is mapped to cosφd. While texture two stores NTT values
in the RGB channels and NR in the alpha channel, texture three repro-
duces NTRT . NTRT as well as NTT occupy three channels, since both com-
ponents store color information due to absorption. Figure 23 illustrates
these look-up textures. An analogous approach had been elected to imple-
ment the Artist friendly hair shader. Two textures serve as look-up memo-
ries, one storing M ′R,M

′
TT ,M

′
TRT and one storing N ′R, N

′
TT , N

′
TRT . In con-

trast to NTT , NTRT , the components N ′TT , N
′
TRT only reserve one channel,

because color and intensity are multiplied after function evaluations, see
equation 51. The first texture is also addressed by sin θi and sin θo, the sec-
ond texture on the other hand is addressed by cosφd and φg. To randomize
the value of φg, the fetch operation uses a pseudo random number between
zero and one, based on the strand ID. Each row of the texture represents a
different angle between 30◦ and 45◦. The resulting textures are depicted in
figure 26.

(a) M ′-components in RGB-
channels

(b) N ′-components in RGB-
channels

Figure 24: Look-up textures used to implement the artist friendly shading model
by Sadeghi et al.
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7 Evaluation

Real-time computer simulations are supposed to create a convincing vir-
tual environment. Since humans are able to distinguish between image
sequences of movements and continuous movements if the image rate is
lower than 24 frames per second, real-time simulations must produce an im-
age at least every 42ms. Profiling techniques can be used to ensure that
an application fulfils this requirement. The application presented by this
thesis utilizes a profiling technique very similar to the one described by
Preshing [52]. A profiling module is used to track each relevant function call
and to analyse the execution duration. The profiling overhead per function
call is less than 100ns.

7.1 Visual Quality

The distinction between simulation and rendering is also reasonable, when
evaluating the visual quality of the application. Since wind forces are the
primary external forces of this simulation, the reaction to them is compared
with the behaviour of real hair. Figure 25a shows a real person whose long
hair is subject to wind. It is apparent, that strands form wisps, which fly in
the same direction. This also is applicable to the virtual character demon-
strated in figure 25b. The movement of real hair is more differentiated
though, due to friction forces between neighboring hair strands [51] and be-
cause the simulation misses flow characteristics of wind. In the near future
it will not be possible to simulate hair accurately, but the visual impression
of simplified models is already satisfying.
The appearance of hair depends on the underlying shading system. While
the model of Kajiya and Kay is rather inexact, the model by Sadeghi et al.
and Marschner et al. are capable of presenting realistic results. Figure 25b

(a) The long hair of a person is sub-
ject to wind

(b) A similar setup, where the hair
of a virtual character is subject to
wind

Figure 25: Comparison between a real and a virtual character.
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(a) Offline Rendering with
30.000 hairs

(b) Real-time rendering with
20.500 hairs and 500 guide
hairs

Figure 26: Comparison between two hair renderings. The left one has been ren-
dered over a period of 44 seconds, while the right is simulated at 30
frames per second.

is rendered using the artist-friendly system and shows natural color gra-
dations. Marschner’s shading model had been used to render the series of
pictures in appendix A.4, which also appear real. The last picture of the
series seems to be to bright, which might either be related to parameter
settings, or to the neglect of elaborate scattering. Multiple-scattering emi-
nently effects the appearance of light coloured hair, see [44], but has been
ignored for performance reasons. While the physical based approach by
Marschner et al. is bound to produce realistic hair, the model of Sadeghi
et al. is able to produce super-realistic hair. Figure 26 pictures the attempt
to create hair that looks like fire. Here, illustration 26a is more convincing,
also because the application is unable to make gradients. All shading tech-
niques discussed in this thesis are far-field approaches. Strands shaded by
far-field models satisfy at a given distance but appear flat when inspected
close enough. Because near-field approaches are more involved and still
subject to research, far-field methods, which work well in most cases, were
deployed here. In his Ph.D. thesis [70, 71] Zinke discusses near-field meth-
ods in detail.
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7.2 Computation Time

To estimate the efficiency of the simulation, the processing time of each
computation step were averaged over a period of two minutes. Table 3
lists measurements taken with the reference (CPU-based) implementation.
The test system was made up of a Intel CoreTM i7-920 processor and a nVidia
GeForce GTX 560 Ti graphics card. Each row contains the processing time
per frame of the respective simulation step, followed by a percentage which
relates to the total time per frame. The total time includes all simula-
tion steps along with time needed for anti-aliasing and the presentation.
Shadow had been disabled. The first three columns - 100 to 300 guides
with 30 neighbors, which equates to 3.100 to 9.300 hairs - indicate that all
methods are of linear complexity. The percentage values increase from row
one to three, because the fraction of operations is unrelated to the simula-
tion decreases. Prominent are high costs of collision-handling and angular
forces. Since the character was rotating and the hair has been subject to
wind and gravity, many hairs were colliding with one (or multiple) of the
ten collision spheres in the test scene. This involved collision responses,
which might explain the costs. A reduction of costs arising from collision-

Set-up 100 guides
30 neigh-
bors

200 guides
30 neigh-
bors

300 guides
30 neigh-
bors

300 guides
60 neigh-
bors

Add linear
forces

0.1973ms
(2.44%)

0.3985ms
(4.01%)

0.5907ms
(4.27%)

0.5935ms
(2.94%)

Add angular
forces

1.2046ms
(14.88%)

2.4012ms
(24.14%)

3.6037ms
(26.05%)

3.6015ms
(17.83%)

Add external
forces

0.0542ms
(0.67%)

0.1100ms
(1.10%)

0.1652ms
(1.19%)

0.1686ms
(0.83%)

Integration 0.3124ms
(3.86%)

0.6269ms
(6.30%)

0.9403ms
(6.80%)

0.9417ms
(4.66%)

Post-
Processing

0.1094ms
(1.35%)

0.2159ms
(2.17%)

0.3441ms
(2.49%)

0.3561ms
(1.76%)

Collision-
Handling

0.8614ms
(10.57%)

1.6741ms
(16.83%)

2.5928ms
(18.75%)

2.6141ms
(12.94%)

Character
Animation

0.0108ms
(0.13%)

0.0201ms
(0.20%)

0.0288ms
(0.20%)

0.0337ms
(0.17%)

Interpolation 0.7276ms
(8.97%)

1.4497ms
(14.56%)

2.1637ms
(15.65%)

4.1803ms
(20.67%)

Total time /
FPS

8.0967ms
123.5fps

9.9293ms
100.7fps

13.8292ms
72.31fps

20.1306ms
49.7fps

Table 3: Performance measurements of the reference implementation.
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Figure 27: The red graph presents measurements of the reference implementation,
while the black graph is presenting measurements of the GPU-based
implementation.

handling could be achieved by using a hierarchy of bubbles [68] instead of
collision spheres. The computation of angular forces is expensive due to ro-
tational transformations, see section 3.2. A deeper investigation of flexion-
springs might yield an alternative, which is better suited for real-time sys-
tems. Expenses of the interpolation step comprises adjustments of wisp
radii that are related to speed of movements. The last column lists mea-
surements taken with 18.300 hairs, consisting of 300 guides with 60 neigh-
bors. Because twice as many neighbors were used in comparison with the
previous column, the costs of the interpolation step doubled, while other
steps are unaffected within a small tolerance range.
Figure 27 illustrates performance differences between the CPU and GPU-
based implementation. Since the application’s only task is to present hair,
the CPU is not working to full capacity, if the simulation is moved to the
GPU. This is reflected in the beginning of both graphs: The processing time
of the GPU-based variant increases linearly right from the start, whereas
the processing time of the CPU-based implementation increases slower at
the beginning. At around 1.000 guide hairs, the graphs intersect, which
means that the GPU based approach is faster thence. Due to the fact that
typical hair styles are approximated by less than 1.000 guide hairs, the
GPGPU implementation introduced no improvements here. CPU bound
applications however can benefit from the general purpose interface of
modern graphic cards. Furthermore, one has to control whether different
thread allocations can increase the performance of the GPU-based imple-
mentation.
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8 Conclusion

The simulation of virtual hair is a difficult task, especially when targeting
real-time environments. While some effects, such as hair-hair interaction
due to friction are not yet predictable fast enough, the overall behaviour
of hair can be visualized in real-time. Even though a stand alone simula-
tion has been presented here, it is likely that only a few characters near the
camera require a detailed hair simulation, which makes the described tech-
niques applicable for other applications, such as games. Depending on the
hairstyle and the number of guide hairs, single characters can be simulated
leaving space for additional computations.
The thesis showed, that the visualization of hair requires special efforts in
many respects. In the beginning, modelling tools have to be designed for
hair generation and need to support file formats that are usable for simula-
tions. In addition to choosing and implementing animation methods, one
has to develop geometry generation processes and adapt rendering tech-
niques. Common shadow mapping is not suitable for hair rendering and
some anti-aliasing procedures fail as well. Since much research has been
spent on hair visualization, dedicated techniques are available.
The shading model presented by Marschner et al. enables visual pleasing
hair and the derivation by Sadeghi et al. provides easy control parameters.
State of the art simulations employ mass-spring systems [32] or a combina-
tion with auxiliary methods. Spring systems are well understood, provid-
ing many resources to draw on. Although simulated particles were used to
generate hair strands, one could use the same methods to produce different
kinds of geometry, such as tentacles (Figure 32a in the appendix outlines
that tentacles can be produced by using strands with high diameter). Some
features of the application still need more details. For example, artists may
need the possibility to create color gradients or streaked hair.
Ducheneaut et al. [15] discovered that “hair style and color are considered
‘high impact’ features by users” (p. 4) and that users spend most time at
adjusting them during avatar customization. Therefore, and because pro-
cessing power increases, it is likely that within the next few years hair sim-
ulations become advertisement for high-class computer games. The simu-
lation presented here demonstrates that natural hair has already arrived in
real-time applications.
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A Additional Figures

A.1 SEM Image of a Hair Fiber

Figure 28: Image of a hair fiber taken with a scanning electron microscope. The
cuticle scales are clearly visible. While the root points to the left, the tip
points to the right. The image has been kindly provided by the Institute
of Biological, Environmental and Rural Sciences of the Aberystwyth
University and Dr. Stephen Clayton Wade.
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A.2 Deep Opacity Map

(a) Hair-Rendering with the Marschner Shad-
ing model

(b) The corresponding deep opacity map

Figure 29: Hair-Rendering with its corresponding deep opacity map. Here the
deep opacity map is inverted, hence yellow represents opacity values
of the third layer, red values of the second and third layer, and black
values of the first, second and third layer.

A.3 Internal Path Lengths in Unit Circles

Figure 30: The internal path length in unit circles can be formulated as:
s = 2 cos(γt).
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A.4 Demonstration of Wind

(a) Demonstration of wind force at t = 0.0s (b) Demonstration of wind force at t = 1.0s

(c) Demonstration of wind force at t = 2.0s (d) Demonstration of wind force at t = 3.0s

Figure 31: Series of pictures to demonstrate hair under the influence of wind.
Here, 50.000 strands are shaded with the model by Marschner et al.
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A.5 Hair-Styles

(a) Tentacle-like hair structure (few
hairs with high diameter)

(b) Hair without shadow
seems to be flat

(c) Hair with self-
shadowing on the
other hand appears
voluminous

Figure 32: Further hair-styles. Figure a) illustrates the usage of extreme param-
eter settings. Figure b) and c) show the effect of self-shadowing and
rendering settings.
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A.6 Graphical User Interface

Figure 33: Arranged screen-shots of the graphical user interface. The first three
rows of control items address the different shading methods. Row four
provides widgets which affect the physics of the simulation. Miscella-
neous parameters, can be tweaked in row five, while the last row pro-
vides control over the process of geometry generation. All elements are
rotated by 90◦, due to space reasons.
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