
Fachbereich 4: Informatik

Camera-Agnostic Monocular
SLAM and Semi-Dense 3D
Reconstruction

Masterarbeit
zur Erlangung des Grades
Master of Science
im Studiengang Computervisualistik

vorgelegt von

Martin Rünz

Betreuer: Dipl.-Inform. F. Neuhaus, Dipl.-Inform. C. Winkens, Institut für
Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau
Erstgutachter: Prof. Dr.-Ing. Dietrich Paulus, Institut für
Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau
Zweitgutachter: Dipl.-Inform. F. Neuhaus, Dipl.-Inform. C. Winkens,
Institut für Computervisualistik, Fachbereich Informatik, Universität
Koblenz-Landau

Koblenz, im September 2015

Kurzfassung
Die folgende Arbeit behandelt Techniken zur Lokalisierung und Kartierung unter
der Verwendung einer einzigen Kamera. Das zugrundeliegende Problem, auch als
monocular SLAM bekannt, wird zunächst erörtert und im Kontext bestehender
Publikationen betrachtet. Es werden relevante mathematische Konzepte präsen-
tiert, um nachfolgend diskutierte Verfahren untersuchen zu können. Dabei wird
ausführlich auf die Methodik von Verfahren eingegangen, welche dem Stand der
Technik entsprechen.
Ein besonderer Fokus der Arbeit besteht darin, neben traditionellen auch omnidi-
rektionale Kameras miteinzubeziehen. Durch die Funktionsweise omnidirektionaler
Kameras ergeben sich besondere Anforderungen, denen übliche SLAM-Verfahren
nicht entsprechen. Daher werden explizit jene Methoden untersucht, die sowohl
für den Einsatz mit traditionellen als auch mit omnidirektionalen Kameras geeig-
net sind. Abschließend wird ein neu entwickeltes Verfahren vorgestellt, das sich
am Stand der Technik orientiert und durch Verallgemeinerungen mit beliebigen
zentralen Kameramodellen einsetzbar ist. Die Evaluation des neuen, CAM-SLAM
genannten Verfahrens zeigt, dass dieses ähnlich genau wie modernste Referenzver-
fahren operiert, gleichzeitig aber eine höhere Flexibilität bietet.

Abstract
The following thesis discusses localization and mapping techniques based on a sin-
gle camera. After introducing the given problem, which is known as monocular
SLAM, an overview of related publications is provided. Relevant mathematical
principles are presented and subsequently used to compare available methods in
the abstract. During this comparison, state-of-the-art methods are analyzed thor-
oughly.
Various camera models are studied with emphasis on omnidirectional cameras, and
corresponding techniques are investigated. Employing omnidirectional cameras
imposes special requirements that are not met by common SLAM-methods. In
this thesis, techniques that are applicable for traditional as well as omnidirectional
cameras are evaluated.
A new camera agnostic monocular SLAM system (CAM-SLAM) is presented. It
was developed within the scope of this thesis and is inspired by recently proposed
SLAM-methods. In contrast to most other systems, it supports any central camera
model. Experiments show that CAM-SLAM features similar accuracy as state-of-
the-art methods, while being considerably more flexible.

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine ande-
ren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Arbeit
in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle
Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.
Die Vereinbarung der Arbeitsgruppe für Studien- und Abschlussarbeiten habe ich
gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver-
standen.

ja � nein �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. ja � nein �

Koblenz, den 30. September 2015

Contents

1 Introduction 9
1.1 Related work . 10
1.2 Hardware . 13
1.3 List of symbols . 15

2 Background 17
2.1 Representing motion . 17
2.2 Manifolds and Lie Groups . 18
2.3 Optimization . 20

2.3.1 Maximum likelihood and Maximum a posteriori 21
2.3.2 Least Squares . 23
2.3.3 Gauss-Newton . 24
2.3.4 Levenberg-Marquardt . 26
2.3.5 Robust error functions . 27
2.3.6 Graph-based optimization 28
2.3.7 RANSAC . 30

3 Camera models 33
3.1 Pinhole Model . 33
3.2 Omnidirectional Models . 35

3.2.1 Hyperboloid Catadioptric Model 36
3.2.2 Unified Projection Model: Geyer and Daniilidis 38
3.2.3 Unified Projection Model: Scaramuzza 39
3.2.4 Projecting onto Spheres and Cylinders 40
3.2.5 Cylindrical and Equiangular Camera Models 41

4 Multi-View Geometry 43
4.1 Epipolar Geometry . 43

4.1.1 Essential Matrix Estimation 45
4.2 Triangulation . 47

5 Monocular SLAM 55
5.1 Omnidirectional Monocular SLAM 56
5.2 Keyframe Graphs . 57
5.3 Keypoint-based Methods . 58

5.3.1 Bundle-Adjustment . 59
5.3.2 Tracking . 61

5.4 Direct Methods . 62
5.5 Initialization . 63

6 Semi-Dense 3D Reconstruction 65
6.1 Depth Uncertainty . 66

7 Loop-Closing 71

8 Implementation 73
8.1 System overview . 74

8.1.1 Package: cam-slam . 74
8.1.2 Package: cam-slam-tests . 77
8.1.3 Package: cam-slam-viewer 77

8.2 Data Structures . 78
8.2.1 Map and Map Point . 78
8.2.2 Frame . 79
8.2.3 Keyframe . 79
8.2.4 Camera Model . 79
8.2.5 Feature Handler . 80

8.3 Algorithms . 80
8.3.1 Mapping . 80
8.3.2 Tracking . 83
8.3.3 3D Reconstruction . 83

8.4 VSN V.360◦ . 87
8.4.1 Calibration . 88
8.4.2 Artifacts . 90

9 Results 91
9.1 Accuracy . 93
9.2 Performance . 97

10 Conclusion 101

A Additional Figures 103

B Additional Listings 111

Chapter 1

Introduction

The term simultaneous localization and mapping (SLAM) denotes the process of
creating or refining a map, while determining the own position at the same time.
This is a trivial task for humans: Imagine waking up after a long drive as a
passenger, facing a new environment. Usually, it will only take seconds to get
a proper understanding of the surroundings. Designing a machine with similar
perceptional capabilities is a complex goal, which researchers of different domains
strive for by building sensors and software. Inspired by the effective vision systems
one can find in nature, such as the human eye in conjunction with the visual cortex,
researchers have brought computer vision into focus.

SLAM techniques that rely on vision are referred to as visual-SLAM techniques
and their performance increased remarkably in the last decade. This thesis con-
centrates on omnidirectional monocular visual-SLAM systems, which are SLAM
systems that deploy a single camera1 with a wide field of view. Taking up the
analogy to nature, such a vision system would correspond to that of a rabbit or
horse, as the eyes of these animals also maximize their field of view at the expense
of having monocular vision. There are several reasons for advocating the use of
omnidirectional sensors in computer vision. First, many algorithms with appli-
cations to robotics detect visual landmarks. These landmarks will be present in
many images when an omnidirectional camera is employed, resulting in a higher
robustness. Second, a vision system with a high field of view collects more data
than a traditional vision system in the same amount of time, although at a low-
er resolution. This is particularly useful in robotics or when teleconferencing or
performing surveillance.

The purpose of this thesis is to introduce concepts of visual-SLAM, and the design
of a new SLAM system for omnidirectional cameras. In fact, the newly creat-

1Or a set of cameras with non-overlapping images.

9

10 CHAPTER 1. INTRODUCTION

ed system makes little assumptions about the camera model and supports tradi-
tional, omnidirectional and every single-view camera model2. For this reason, it
is called camera-agnostic monocular SLAM – CAM-SLAM. Besides performing
monocular SLAM, CAM-SLAM is also capable of reconstructing the environment
semi-densely.

Firstly, the thesis presents related work in a concise and rather historical manner.
Relevant publications are revisited later and in more detail. In order to discuss
visual-SLAM methods on a conceptional level, a theoretical background is pro-
vided in Chapter 2 and additional resources are referenced when necessary. Since
CAM-SLAM supports every central camera model, a set of common models is
presented in Chapter 3. The models presented in this chapter are also used during
the experiments performed later. Chapter 4 continues to elaborate on theoretical
aspects related to multi-view geometry. It already aims at camera model-agnostic
methods and first tests are run. State-of-the-art monocular visual-SLAM meth-
ods are investigated and compared in Chapter 5. Both keypoint-based and direct
methods are considered and omnidirectional methods are reviewed as well. The
subsequent Chapter 6 analyzes semi-dense 3D reconstruction algorithms and pro-
vides the mathematical derivation of the method implemented in CAM-SLAM.
As loop-closing is an important aspect of large-scale SLAM-systems, its funda-
mentals are presented in Chapter 7. The remaining chapters are dedicated to the
implementation and evaluation of CAM-SLAM. The combination and modifica-
tion of algorithms are discussed and the system’s performance is measured during
experiments.

1.1 Related work

A substantial amount of the theoretic principles involved in omnidirectional ma-
chine vision has been established during the 1990s, followed by the implementation
of thorough omnidirectional vision systems. The first decisive monocular SLAM
systems emerged in the subsequent decade and naturally inspired omnidirection-
al monocular SLAM systems. A roughly chronological overview of related work
follows, while more details on relevant publications are given in the respective
chapters of this thesis.

Modern monocular SLAM systems perform a 3D reconstruction of parts of the
environment for mapping. Early works on omnidirectional 3D reconstruction were
the ones of Ishiguro et al. [IYT92] and Kang and Szeliski [KS97]. While Ishiguro

2As long as it is possible to extract and track salient image features.

1.1. RELATED WORK 11

et al. used a single rotating camera3 to create a panoramic depth image, Sing
Bing Kang and Richard Szeliski showed that the 8-point algorithm can be used
to recover structure from multiple panoramic images using normalized cylindrical
coordinates.
In 1998, Gluckman and Nayar [GN98] showed that it is possible to estimate the
motion of a catadioptric camera using the gradient based optical flow computation
of Lucas and Kanade [LK81]. Simon Baker and Shree Nayar also derived further
theoretical aspects of catadioptric camera systems in [BN98, BN99]. They de-
scribe which configurations exhibit a single effective viewpoint and that the image
resolution at the periphery of an omnidirectional image is highest.
A robot that performs omnidirectional visual homing – the task of navigating
back to a start location based on computer vision, similarly to insects returning
to their nests – was presented by Franz et al. [FSMB98] and later by Argyros et
al. [ABO01] and Goedemé et al. [GTVG+05].
In [CS99], Chahl and Srinivasan developed an algorithm to estimate the distance
of objects given their image space deformation while moving. Geyer and Dani-
ilidis continued to investigate geometrical characteristics of catadioptric cameras
[GD99, GD01] and proposed a unifying camera model [GD00] for traditional and
omnidirectional cameras. In order to reduce processing time, Hicks and Bajcsy fo-
cused on mirror designs that do not distort the ground plane in their work [HB01].
Bunschoten and Kröse use of a cylindrical camera model to perform a 3D recon-
struction in [BK01b, BK03]. They argue that by employing the cylindrical model,
the parametrization of epipolar curves is easier than the parametrization of epipo-
lar conics, as described by Tomáš Svoboda in [Svo00b]. A method to compute
such cylindrical images based on a catadioptric video stream was earlier proposed
by Peri and Nayar [PN97].
One of the most prominent publications on monocular SLAM is the seminal work
of Andrew Davison published in 2003 [Dav03]. Davison applied EKF-SLAM to
the domain of computer vision and his method is able to execute mapping as well
as tracking in real-time. In 2006, Eade and Drummond presented a competing
method [ED06] based on Fast-SLAM, which scales better.
Given the motion of a robot, Fleck et al. [FBB+05] were able to reconstruct a
dense 3D map of the environment using a catadioptric setup. On that account,
they employed a graph cuts-based stereo matching algorithm.
Calibration methods for omnidirectional cameras were presented by Scaramuzza et
al. [SMS06a] as well as Mei and Rives [MR07] and are based on the model earlier
proposed by Geyer and Daniilidis.

3The actual optical center of the camera was rotating and translating in a predefined way,
allowing the computation of depth values.

12 CHAPTER 1. INTRODUCTION

Some authors, such as Zhu et al. [ZHK+07], acquire omnidirectional vision with
an array of traditional cameras. The drawbacks of these arrays are that they do
not exhibit a single viewpoint and that they are expensive, since multiple cameras
have to be installed. Goedemé et al. [GNTVG07], Murillo et al. [MGS07] as
well as Valgren and Lilienthal [VL07] presented global omnidirectional topological
localization systems. All three systems are able to localize themselves, though
requiring a pre-built map. A 9-point algorithm for estimating para-catadioptric
fundamental matrices was developed by Geyer and Stewenius [GS07]. In this
thesis, however, the computation of essential matrices is preferred, as described in
Section 4.1.

A different method of computing the essential matrix using a para-catadioptric
sensor is given by Gebken and Sommer [GS08]. It is based on conformal geometric
algebra and non-linear optimization techniques.

In 2009, the next milestone in monocular SLAM was achieved by Klein and Mur-
ray [KM09], through decoupling the mapping and tracking task. As a result, a
more expensive mapping method is used, while tracking is performed in real-time.

The concept of homographies is frequently encountered in computer vision. For
instance, the map initialization of a SLAM system can be based on homogra-
phies. Zhang et al. [ZLZH10] developed a method to compute homographies in
the presence of a catadioptric camera with hyperbolic or elliptical mirror.

In 2011, Kawanishi et al. [KYK11] and Pagani and Stricker [PS11] presented a
catadioptric and a spherical structure from motion application, respectively. Both
systems are not intended for the use in real-time domains but share mathematical
similarities, as will be revisited later. Schönbein et al. showed that the quality
of three-view omnidirectional 3D reconstruction outperforms two-view reconstruc-
tion, when beneficial camera locations are chosen [SRL13].

There has been a trend in recent years to compute visual odometry, i.e. to esti-
mate the robot motion, using omnidirectional vision [Lab06, Sca08, SS08, TPD08,
Sch12, ATA13]. The advantage of estimating motion with omnidirectional sensors
lies in the computation of the rotational motion component. While rotations are
usually a burden when working with traditional cameras, all methods formerly
mentioned exploit omnidirectional peculiarities to compute rotation. Although
some of the systems, such as the one of Scaramuzza and Siegwart [SS08], exhibit
a high accuracy, their estimation will diverge from the ground truth eventually.
This happens because small errors accumulate over time, resulting in an inevitable
drift. Furthermore, some of the systems impose constraints to the environment,
which the system of Scaramuzza and Siegwart is a good example for, again. Such
a constraint can be the assumption that the robot is moving on flat ground only,
or that the robot is surrounded by walls.

1.2. HARDWARE 13

In contrast to visual odometry approaches, researchers have also adapted full-
fledged SLAM systems to the domain of omnidirectional vision, often based on
EKF-SLAM [RPG10b, RPG10a, GRMG11, PO13] or Fast-SLAM [GMR13]. A
detailed discussion on monocular SLAM will follow in Section 5.

Please note that the very recent omnidirectional implementation of LSD-
SLAM [CEC15] was presented too late to be investigated extensively. It is referred
to for the sake of completeness and is only addressed shortly in the remaining.

1.2 Hardware

(a) An omnidirectional camera built
by attaching a hyperboloid mirror to a
DSLR camera.

(b) Omnidirectional image made with
the camera setup shown on the left.

Figure 1.1: Prototypical omnidirectional camera and a corresponding image. Courtesy
of Ryosuke Kawanishi and Toru Kaneko, Shizuoka University and Atsushi Yamashita
and Hajime Asama, University of Tokyo. Published in [KYKA12] as Figure 1.

As it is denoted in [BK01a, p.4-15], the word omnidirectional is a more technical
synonym of the word panorama, which emerged in the late 18th century and is
commonly used in the context of art. Puchberger invented the first panoramic
camera in 1843 and inspired several innovators who constructed successors in the
following years. These early omnidirectional cameras contained moving parts like

14 CHAPTER 1. INTRODUCTION

swing lenses or rotating lenses to capture a wide field of view. In addition, pre-
decessors of wide-angle lenses were also introduced in the 19th century. A camera
system that avoided moving parts and used a spherical lens filled with water was
presented by Sutton in 1858.

In 1970, Rees was granted a patent for an omnidirectional camera system which
used a hyperboloid mirror [Ree70]. The system captured the surface of the mirror
and its resulting images could be transformed to normal perspective images, due
to the uniqueness of the projection center. Figure 1.1 shows a modern setup of
a hyperbolic mirror attached to a DSLR camera. Another catadioptric setup was
introduced by Shree Nayar in 1988 [Nay88]. In contrast to Rees, Nayar captured
the surface of two spheres in order to execute stereo vision algorithms.

Oh and Hall present a mobile robot [OH87] that uses a camera with a wide-angle
fish-eye lens, followed by the work of Yagi and Kawato, who experiment with a
mobile robot using a catadioptric camera [YK90, YKT91]. Yagi and Kawato call
their system COPIS (standing for conic projection image sensor), which is used
for obstacle avoidance. Another robot equipped with an omnidirectional image
sensor is described by Thomas Geb in [Geb03]. Here, a reflective hemisphere is
imaged for tele-operation.

Similar to the earlier work of Nayar in 1988, Gluckman, Nayar and Thoresz built
an omnidirectional stereo-sensor by stacking two catadioptric cameras on top of
each other [GNT98]. Their method produced a disparity map projected onto a
cylindrical surface. More recent works on binocular omnidirectional vision systems
are presented by Arican and Frossard [AF07] and Goto et al. [GYK+11]. Both
systems align two cameras horizontally to construct a disparity map or reconstruct
3D points. Luo et al. [LHS+07] elaborate on a less common setup, in which a single
camera captures two mirrors that are aligned behind one another.

Especially in the last two decades, more systems have been proposed and most of
them are based on one of the configurations described by Nayar and Baker [Nay97,
BN99] or Yagi [Yag99]. Ishiguro [Ish98] also addresses various catadioptric camera
setups, while emphasizing low-cost solutions.

Experiments that were performed in the course of this thesis employed synthetic
and real datasets. The V.360◦ by VSN Mobil has been used to capture own
sequences, while the hardware used in external datasets is described in the relevant
publications [SEE+12, GLU12, SSG14].

The last two sections briefly reviewed related concepts and hardware and placed
this thesis into context. Subsequent chapters explain mathematical representa-
tions for omnidirectional cameras and discuss the development of a new monocular
SLAM-system.

1.3. LIST OF SYMBOLS 15

1.3 List of symbols

Geometric transforms

R Rotation matrix
t Translation vector or baseline
T Affine transformation

Coordinates

x Real number: x ∈ R
x Real vector: x ∈ Rn

x̂ Normalized vector: x̂ = x
‖x‖

xc 3D camera coordinate: (x, y, z, 0)> ∈ R4 or (x, y, z)> ∈ R3

u Image coordinate: (du, dv, d)> ∈ P2 or (u, v)> ∈ R2

C Coordinate of camera frame: (x, y, z, 1)> ∈ R4 or (x, y, z)> ∈ R3

Matrices

K Camera calibration matrix, pinhole camera model
P Camera matrix = KT ∈ R3×4

[a]×
def
=

 0 −a3 a2

a3 0 −a1

−a2 a1 0



Parameters

λi = c Configurable threshold with default value c
Λi = c Configurable parameter with default value c

Chapter 2

Background

Visual SLAM systems consist of a variety of components, each of them provid-
ing different techniques and algorithms. Even though these components are cus-
tomized for the special needs of chosen methods, some central tasks – such as the
representation of motion – are indispensable, regardless of design choices. This
chapter addresses fundamental, mainly mathematical, concepts that are relevant
for most visual SLAM systems. All of the topics presented in this chapter will
be revisited – directly or indirectly – afterward. As a profound discussion of ev-
ery involved method is out of the scope of this thesis, more thorough literature is
referred to where appropriate.

2.1 Representing motion

The position and orientation of a robot, referred to as pose of the robot, as well
as its movement can be expressed using rigid-body motion. Rigid-body motion in
Rn is commonly modeled by the set of matrices that corresponds to the special
Euclidean group SE(n+ 1). Those matrices are of the following form:

M ∈
{(
R t
0 1

) ∣∣∣∣ R ∈ SO(n) and t ∈ Rn

}
Where R is an element of the special orthogonal group SO(n), a common Lie
group, which represents rotation, and t ∈ Rn represents translation. Such trans-
formation matrices can be applied to points and vectors in homogeneous coordi-
nates. One major drawback of this representation is, however, that rotations are
described by n× n matrices, although they have only n degrees of freedom. This
makes it difficult to optimize them due to the high dimensionality and constraints,

17

18 CHAPTER 2. BACKGROUND

Figure 2.1: Illustration of the local mapping from a sphere surface to the tangent plane.
The operator � usually denotes an addition in tangent space, followed by a mapping back
to the manifold: � :M× Rn 7−→M, where x ∈M and δ ∈ Rn. Courtesy of Christoph
Hertzberg, René Wagner, Udo Frese and Lutz Schröder, University of Bremen. Published
in [HWFS11] as Figure 1. A detailed introduction of box operators is given in [Her08].

such as det(R) = 1. Hence, it is useful to have a more compact representation of
the special Euclidean group. While it is possible to express rotations using quater-
nions, a more generic solution is offered by the Lie algebra, which is discussed in
the following section.

2.2 Manifolds and Lie Groups

Manifolds and Lie groups are topological spaces that are often encountered in
physics or robotics. While their structure is discussed rather briefly here, a more
thorough introduction is given by Hauke Strasdat [Str12a] or textbooks such
as [Gal11, Sti08]. Manifolds are spaces that locally behave Euclidean, but po-
tentially behave differently in a global perspective. Figure 2.1 illustrates a sphere
which is a common example of manifolds. Locally, the sphere behaves like a plane,
the tangent plane, whereas the global behavior is non-linear.

Lie groups are differentiable manifolds so that group operations (multiplication and
inversion) are smooth maps. This allows constructing the tangent space at each
point of the manifold. The tangent space contains all vectors that tangentially pass
through the point of interest. It turns out that the tangent space at the identity
can be used to construct each element of the Lie group by repeating an infinitesimal
transformation. This becomes clearer, when regarding the special orthogonal Lie

2.2. MANIFOLDS AND LIE GROUPS 19

group SO(3) prototypically. Elements of this group represent rotations in 3D. An
infinitesimal element of the tangent space at the identity expresses an infinitesimal
change in rotation. When such an element is chosen correctly and the infinitesimal
changes in rotation are accumulated often enough, then each rotation ∈ SO(3) can
be constructed.

Example: Assume a rotation R(α)z of an arbitrary angle α around the z-axis is
given, then the rotation matrix and the infinitesimal first order approximation are
written as:

R(α)z =

cosα − sinα 0
sinα cosα 0

0 0 1

 (2.1)

R(dα)z =

 1 −dα 0
dα 1 0
0 0 1

 = I + dα

0 −1 0
1 0 0
0 0 0

 = I + dαω̂z (2.2)

Now, it is possible to reconstruct the original rotation by the accumulation of
infinitesimal rotational changes, which results in the exponential mapping :

R(α)z = (I + dαω̂z)
∞ = lim

n→∞
(I +

αω̂z
n

)n = exp(αω̂z) (2.3)

Equation 2.3 shows that it is possible to represent rotations around the z-axis
through a scaled skew symmetric matrix αω̂z. This scheme can be generalized to
rotations around arbitrary axes by adjusting the matrix accordingly:

ω̂ = [ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.4)

In the generalized case, ω̂ is still a skew symmetric matrix and is called generator
of infinitesimal transformations. Generators are elements of the tangent space,
here of SO(3), and they form their own algebra, the Lie algebra, here ω̂ ∈ so(3).
The multiplication of the so(3) algebra is known as Lie bracket and is given by:

[· , ·] : so(3)× so(3) 7−→ so(3) , [v̂, ŵ] := ŵv̂ − v̂ŵ (2.5)

So far, the Lie group SO(3) and the related Lie algebra so(3) were presented.
Equation 2.3 showed that there is an exponential mapping from elements of so(3)
to elements of SO(3). The inverse mapping is given straightaway by the logarithm.
Applying the tangent space so(3) instead of SO(3) should be considered due to
the following reasons:

20 CHAPTER 2. BACKGROUND

1. While so(3) is linear, SO(3) is not.

2. In contrast1 to elements of SO(3), elements of so(3) are parametrized mini-
mally and unconstrained. The unconstrained representation without singu-
larities is especially useful for optimization purposes.

Like SO(3), the group of rigid transformations SE(3), as well as the group of
similarity transformations Sim(3), are also Lie groups and are associated with Lie
algebras in the same manner. While se(3) contains elements of the tangent space of
SE(3), sim(3) consists of elements of the tangent space of Sim(3). In the context
of pose graph optimization, sim(3) is probably the most interesting transformation
representation, since it embodies scaling. As explained later, scale drift is a major
source of error in the presence of monocular sensors. Hence, explicitly addressing
scale changes during optimization is advantageous.

2.3 Optimization

Virtually all computer vision methods encounter some sort of uncertainty, since
the mere process of performing sensor measurements involves ambiguities. Non-
synthetic images, for example, may exhibit a substantial degree of noise and quan-
tization inaccuracies, resulting in contradicting measurements. Hence, algorithms
try to find solutions that fit the data best, as a perfect fit is not possible in general.
As soon as various solutions are feasible, the task of finding the best of them is
an optimization problem. While there are algorithms that perform optimization
rather implicitly, such as the Hough transform for line fitting, others make explicit
use of optimization techniques. In order to design new methods, it is crucial to
have an understanding of appearing uncertainties and to know which techniques
are available for error reduction.

The general optimization problem can be expressed as follows. Given an objective
function f(x) of a parameter vector x, the goal is to find the global minimizer x∗:

x∗ = argmin
x∈S

f(x) (2.6)

Where S is the space of solutions and x might have to fulfill constraints for be-
longing to this space. Assume that x parametrizes a line in an image: In this
prototypical example, the function f could assign each line configuration an error
based on observations, i.e. the sum of square distances of observed points to that

1More precisely, the Euler angles SO(3) representation introduces singularities in the form of
gimbal locks, and the R3×3 matrix representation is redundant and entails constraints.

2.3. OPTIMIZATION 21

line. Then, x∗ would be the line parametrization which fits the point observations
best.

The following sections briefly review techniques to perform optimization, as in
Equation 2.6, with focus on methods that have successfully been applied to com-
puter vision. Throughout this chapter, it is assumed that objective functions are
continuous and differentiable, leading to the methods presented. The notation
used in the next chapter is based on the textbooks [Pri12, Tre13, NW06]2.

2.3.1 Maximum likelihood and Maximum a posteriori

As already mentioned, optimization techniques are employed due to different
sources of uncertainty. Since uncertainty often occurs in a structured way, it
is possible to find probabilistic formulations. Bayes’ rule specifies a relation of
joint probabilities that allows the development of those formulations. According
to Bayes’ rule, when two random variables x and z are given, the conditional
probability or density Pr(x| z) can be formulated as:

Pr(x| z) =
Pr(z|x) Pr(x)

Pr(z)
(2.7)

By convention, the term Pr(x| z) is referred to as posterior, Pr(z|x) as likeli-
hood, Pr(x) as prior and Pr(z) as evidence. Imagine that z expresses sensor
measurements, or point observations as in the earlier example, and x express-
es a parametrization that is to be optimized; then Pr(x| z) represents the post-
observation probability or density of x, Pr(z|x) the likelihood of a measurement
given x and Pr(x) represents prior knowledge of x. The term Pr(z) is commonly
dropped because it is independent of the parameter vector x, and a scaling of
Pr(z)−1 does not change the location of the maximizer of Pr(x| z). While Equa-
tion 2.6 suggests minimizing the error related to a parameter vector, it is also
possible to maximize the probability of a parameter vector, given measurements.

2In [Pri12] Simon Prince denotes probability mass functions as well as probability density
functions with Pr, which is rather uncommon. The advantage of this notation is, however, that
the discrete and continuous case do not have to be addressed separately, as in Equation 2.7, for
example. After all, probability mass and density are strongly related. This notation has been
adopted.

22 CHAPTER 2. BACKGROUND

Assuming the independence of n ∈ N+ measurements z1..zn and dropping the
dominator yields the maximum a posteriori (MAP) fitting:

x∗ = argmax
x

[
Pr(x| z1..zn)

]
(2.8)

= argmax
x

[
Pr(z1..zn|x) Pr(x)

Pr(z1..zn)

]
= argmax

x

[n∏
i=1

Pr(zi|x) Pr(x)

]
Should prior information be unavailable, a uniform distribution of Pr(x) can be
assumed, leading to the maximum likelihood (ML) estimator:

x∗ = argmax
x

[n∏
i=1

Pr(zi|x)

]
(2.9)

As noted by Triggs el al. [TMHF00], ML estimators can also include prior informa-
tion using additional observations. Therefore, the distinction between observation
and prior is rather terminological. In order to compute the best ML parameter
estimate x∗, the derivative of Equation 2.9 has to be set to zero, which results
in expensive computations. To ease the computation, the related log-likelihood
method can be applied. The equation

x∗ = argmax
x

[
ln
(n∏
i=1

Pr(zi|x)
)]

(2.10)

= argmin
x

[
− ln

(n∏
i=1

Pr(zi|x)
)]

= argmin
x

[
−

n∑
i=1

ln(Pr(zi|x))

]
yields the same result as Equation 2.9, since the extremes do not change after
applying the monotonous logarithm function.
Application. Assume a model is parametrized by x and the input z′ is mapped
to an observation z under Gaussian noise ε ∼ N (0,Ω):

z = g(x, z′) + ε (2.11)

Where the model g(x, z′) could again represent a line in an image with observations
z normally distributed around the line. Given the model of Equation 2.11, it is
possible to express Pr(zi|x) as multivariate normal distribution with mean zi:

Pr(zi|x) =
1√

(2π)p det(Ω)
exp

(
−1

2
(zi − g(x, z′i))

TΩ−1(zi − g(x, z′i))

)
(2.12)

2.3. OPTIMIZATION 23

Here, Ω denotes the covariance matrix of the normal distribution and p the dimen-
sion of zi. Combining Equation 2.10 and 2.12 leads to:

x∗ = argmin
x

[
n ln

√
(2π)p det(Ω) +

1

2

n∑
i=1

(zi − g(x, z′i))
TΩ−1(zi − g(x, z′i))

]

x∗ = argmin
x

[
1

2

n∑
i=1

(zi − g(x, z′i))
TΩ−1(zi − g(x, z′i))

]
(2.13)

The structure of this problem is of a special form, which is called least squares
optimization and will be covered in the next section. Before this, some remarks
are owed:

1. It is not always appropriate to model noise by a normal distribution. Hence,
not every maximum likelihood problem is a least squares problem.

2. Noise cannot always be added linearly. For instance, instead of adding noise
linearly on Lie groups, one should consider using the Lie algebra.

3. The use of Bayes’ rule is attractive, because representing Pr(x| z) is problem-
specific and the surface of this function is possibly (much) less uniform than
the one of Pr(z|x).

2.3.2 Least Squares

Optimization problems with the following structure:

x∗ = argmin
x

f(x) = argmin
x

1

2

n∑
i=1

‖ri(x)‖2 (2.14)

are referred to as least-squares problems, since their purpose is to reduce the sum of
square values returned by the error function ri(x). Please note that squaring the
norm is equal to summing squared entries of ri(x) component-wise. It is common
that the error function expresses the difference between a measurement and an
expectation. This difference is also called residual and in accordance with the last
section could be written as:

ri(x) = zi − g(x, z′i) (2.15)

24 CHAPTER 2. BACKGROUND

Assuming that the covariance matrix Ω is the identity matrix, Equation 2.13 al-
ready matches a least squares problem. In practice, the least squares problem is
often described by:

x∗ = argmin
x

n∑
i=1

ri(x)>Ω−1ri(x) (2.16)

Where Ω−1 is called the information matrix. Expression 2.16, seemingly3 more
general than 2.14, is called the generalized least squares. If only diagonal entries
of Ω−1 are unequal to zero, the problem is referred to as weighted least squares,
as this corresponds to Equation 2.14 with arbitrary weighted components. Here,
the scaling by 1

2
has been dropped, as it does not effect the minimizer. Given

the generalized least squares formulation, the minimization of the negative log-
likelihood under Gaussian noise perfectly matches a least squares problem.

The advantage of least squares optimization is that the special structure can be
exploited in order to derive faster or more stable algorithms. In the linear case,
for example, where each ri(x) is linear, it is possible to compute x∗ algebraically.
The Gauss-Newton method is not restricted to the linear case and is presented in
the next chapter.

2.3.3 Gauss-Newton

The idea behind the Gauss-Newton method is simple: Given an initial guess x0

near x∗, assume that the error functions are linear and compute the best fit x1

algebraically using the linear model. Since the assumption of having linear error
functions does not hold in general, x1 = x∗ will usually not satisfy. By repeating
the linearization step arbitrarily often, further successors of x0 are computed until
the solution is good enough. The first order Taylor approximation of ri(x) is:

ri(x+ ∆x) ≈ ri(x) + J i∆x (2.17)

3In fact, generalized least square problems can be rearranged to ordinary ones by transforming
the data. Being a covariance matrix, Ω is positive semi-definite, allowing the decomposition:∑
r>Ω−1r =

∑
r>(LL>)−1r =

∑
(L−1r)>(L−1r) =

∑
‖(L−1r)‖2

2.3. OPTIMIZATION 25

Where J i is the Jacobian of the function ri. Then the squared norm of the residual
is written as follows4:

‖ri(x+ ∆x)‖2 = ri(x+ ∆x)>ri(x+ ∆x) (2.18)
≈ (ri(x) + J i∆x)>(ri(x) + J i∆x)

= r>i (x)ri(x) + r>i (x)J i∆x+ (J i∆x)>ri(x) + (J i∆x)>J i∆x

= r>i (x)ri(x) + 2r>i (x)J i∆x+ ∆x>J>i J i∆x

Remarkably, the term J>i J i in the last line of this equation is an approximation
to the Hessian matrix. This means that solving Equation 2.18 for ∆x performs a
second order approximation using only first order information. To verify this, the
separately computed Hessian writes:

Hi = 2J>i J i + 2
∂2ri(x)

∂xj∂xk
(2.19)

Here j and k are indices for partial derivatives. Formulating a second order Taylor
expansion of the squared norm term would result in an equation similar to 2.18,
which exhibits the additional partial derivatives of Equation 2.19. Avoiding these
second order derivatives is preferable, however, as their computation is demanding.
Furthermore, they are less dominant than the J>i J i part, especially for small
residuals.

So far, the summation of residuals has been neglected. Combining Equation 2.14
and 2.18 yields

∆x∗ ≈ argmin
∆x

n∑
i=1

r>i (x)ri(x) + 2r>i (x)J i∆x+ ∆x>J>i J i∆x (2.20)

= argmin
∆x

n∑
i=1

[
r>i (x)ri(x)

]
+ 2

n∑
i=1

[
r>i (x)J i

]
∆x+ ∆x>

n∑
i=1

[
J>i J i

]
∆x ,

which is quadratic in ∆x. After setting the derivative to zero, ∆x∗ is computed
by solving:

n∑
i=1

[
J>i J i

]
∆x∗ = −

n∑
i=1

[
r>i (x)J i

]
(2.21)

4Here the Gauss-Newton method for plain least squares is derived instead of the generalized
least squares. Since the proceeding is exactly the same in both cases, the less distracting variant
is presented.

26 CHAPTER 2. BACKGROUND

In literature, the explicit notation of the summation is commonly avoided, which
leads to the clearer form:

J>J∆x∗ = −r>J = −J>r (2.22)

As mentioned by Grisetti et al. [GKSK11], the summed matrix J>J is usually
sparse by construction. Hence, it can be efficiently solved using methods like
Cholesky factorization.

Problems of the Gauss-Newton method are that it is only stable for good initial
estimates x0 and that neither convergence nor an improvement with each iteration
is guaranteed. Two improvements in order to overcome these drawbacks lead to
the Levenberg-Marquardt algorithm.

2.3.4 Levenberg-Marquardt

The gradient descent method offers an intuitive approach for optimization. Having
any continuous differentiable function, the negative gradient will point towards a
local or even global minimum of this function. Iteratively taking small enough
steps in this direction will therefore lead to a minimizer. Computing the gradient
of the residuals yields

51

2

n∑
i=1

‖ri(x)‖2= −J>r , (2.23)

using the same notation of Equation 2.22. While being rather stable, the conver-
gence rate of gradient descent is known to be small. Both Levenberg [Lev44] and
Marquardt [Mar63] suggested combining the Gauss-Newton method with gradient
descent for least squares problems by performing gradient descent steps at the
beginning or when convergence is low and Gauss-Newton otherwise. This can be
accomplished using the following equation:

(J>J + λI)∆x∗ = −J>r , (2.24)

where I is the unit matrix and λ a damping factor. This expression is equivalent
to 2.22, when λ = 0. Yet, ∆x∗ develops into the same direction as the gradient
for large λ, since the weight of J>J decreases with increasing λ. This results in an
interpolation between gradient descent and the Gauss-Newton method based on
the value of λ. As described in [DS96], replacing the identity matrix with a positive
diagonal matrix D2 is equivalent to scaling the components of the gradient. To

2.3. OPTIMIZATION 27

improve the convergence speed at situations where the gradient is small but λ and
the curvature are high, Marquardt introduced a change of Equation 2.24 to5:

(J>J + λdiag[J>J])∆x∗ = −J>r , (2.25)

which is the essential equation of Levenberg-Marquardt optimization. Imple-
mentation details and choices for the damping parameter λ are discussed in the
book [SW03] by Seber and Wild.

2.3.5 Robust error functions

Up to now, the optimization discussion emphasized a Gaussian noise model. There
are scenarios, however, where outliers occur in addition to noise. Outliers are
measurements associated with a high error, usually due to misinterpreted data.
Mismatching image features, for instance, is a common source for outliers in the
field of computer vision. The error function of Equation 2.14 is quadratic in the
length of the residual. Therefore, few outlier measurements with high errors have
a massive impact of the overall error, misleading the optimization process. This
effect can be reduced by employing alternative error functions. Given the norm of
a residual δi = ‖ri(x)‖, the error was previously calculated by Cs(δ) = δ2. Several
alternatives to the squared error cost function are available, such as the Huber
function:

Ch(δ) :=

{
δ2 if δ < λb

2bδ else
(2.26)

Here, the constant λb has to be chosen according to the outlier threshold. Like a
squared error function, the Huber function is quadratic in δ for small errors, but
linear once a threshold is passed, which effectively reduces the impact of outliers.
Being convex, the Huber function does not introduce additional minima to the
objective function. Figure 2.2 plots both the Huber and quadratic cost function.
In [HZ04, p.616-622], Hartley and Zissermann compare several error functions and
explain how to apply them in least square optimization. While the Levenberg-
Marquardt method still expects problems with a quadratic cost function, inserting
weighted residuals allows using arbitrary cost functions:

w2
i ‖ri(x)‖2= C(‖ri(x)‖) (2.27)

wi =

√
C(‖ri(x)‖)
‖ri(x)‖

5Marquardt proposed this equation in a different but equivalent form. Since the style adopted
here was introduced by [FAH71], some authors claim that he suggested to use diag[J>J] instead
of I.

28 CHAPTER 2. BACKGROUND

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
os
t

Residual norm δ

Figure 2.2: Comparison of the quadratic (orange) and Huber (turquoise) cost function
with a threshold λb = 0.3. In contrast to the quadratic cost-function, the Huber function
behaves linearly for δ ≥ 0.3.

In this equation, wi is a weight for the residual ri(x) and w2
i ‖ri(x)‖2 is the new

cost function which suffices a least squares structure. In order to perform a Gauss-
Newton or Levenberg-Marquardt iteration, first, the original residuals ri(x) are
computed as usual, followed by computing the incremental step using the weighted
cost function of Equation 2.27.

2.3.6 Graph-based optimization

Various optimization problems, especially those that are SLAM related, exhibit a
(hyper-)graph structure that can be used for optimization. An influential work on
that matter was presented by Lu and Milios in 1997 [LM97], where the graph is
referred to as network of pose relations. The idea was to represent each pose of
a robot as a node in a network connected by links that represent relative motion,
and to perform global optimization on this network. Although the concept of
constructing a graph of poses dates back to 1986 [SC86], it was previously common
to employ sequential mapping only, for example by matching laser-range scans of
two consecutive robot locations. Neglecting global information, however, results
in accumulated errors that can severely interfere with the mapping process. This
is illustrated in Figure 2.3, where the course created using relative motion only,
is compared to a globally optimized trajectory. As already mentioned above, a
graph exhibits nodes and edges, corresponding to robot poses and relative motion
respectively. In more general terms, nodes of the graph form vectors of parameters
to be estimated or optimized, and edges form constraints between the nodes. Given
a cost function that assigns an error to an edge based on how good the constraint is
fulfilled, it is possible to employ the Levenberg-Marquardt minimizer to execute the

2.3. OPTIMIZATION 29

(a) Path from the odometry readings. (b) Recovered path, correct within ±1m.

Figure 2.3: Using only odometry readings for localization results in accumulated errors,
as the path in the left image shows. The magnitude of the error becomes obvious when
comparing the left to the right image, which shows the true trajectory. Both images
display the course from the Victoria Park dataset. Courtesy of José Guivant and Ed-
uardo Nebot, Australian Centre for Field Robotics and Michael Montemerlo, Stanford
University. Published in [TBF05] as Figure 12.14 and 12.15.

graph optimization. When optimizing 3D robot poses, each pose has 6 or 7 degrees
of freedom depending on whether scale is considered in addition to rotation and
translation. As a consequence, the number of stacked parameters to be optimized
increases linearly with the number of poses. For instance, having 30 poses with 7
degrees of freedom leads to a non-linear optimization with 210 parameters. The
number is considerably higher, when observed data is optimized as well. Figure 5.2
illustrates a graph structure, which arises when bundle-adjustment is performed
using graph optimization. In order to compute the high amount of parameters that
is usually involved in graph optimization efficiently, the sparsity of the problem has
to be exploited. Because a single constraint only affects the parameters connected
to the edge, it contributes to few entries of the Jacobian and Hessian matrix. Torr
et al. [TMHF00] describe how the Schur complement allows to exploit this property.
The general graph-based optimization back-end (g2o) used in the implementation
was presented by Kümmerle et al. in 2011 [GKSK11]. It supports various types
of graphs and covers domain-specific implementations for the user.

30 CHAPTER 2. BACKGROUND

2.3.7 RANSAC

RANSAC, introduced by Fischler and Bolles in 1981 [FB81], stands for Random
Sample Consensus and describes a procedure to perform model to data fitting.
In this regard, it can be compared to the least squares method described earlier,
since both approaches allow to estimate the parameters of a model with the help
of data. RANSAC, however, specifically aims at being robust against outlier in
the data by performing the following steps:

1. Select a random minimal subset of the data, which allows to compute model
parameters.

2. Fit a model to the data-subset.

3. For each datum, compute the divergence to the model and count how many
times the divergence is lower than a threshold (inlier count).

These steps are repeated many times, and the resulting model is either the one with
the highest inlier count, or computed – with least squares, for instance – using all
the inliers of the model with the highest inlier count. When the amount of outliers
can be estimated, it is possible to calculate the number of iterations required to
achieve a predefined certainty with which an outlier-free sample was chosen. Let
ε be the probability that a datum is an outlier and s be the size of the minimal
subset, then (1− ε)s results in the probability that a subset is free of outliers; and
(1−(1−ε)s)N is the probability that after sampling N times, each sample contains
an outlier. Hence, N has to be chosen in a way that (1 − (1 − ε)s)N = 1 − p is
fulfilled, where p is the desired predefined confidence. This leads to:

N =
log(1− p)

log(1− (1− ε)s)
(2.28)

Here, N should be rounded up to get a confidence of at least p. The threshold
mentioned in step 3 of the RANSAC-procedure can be estimated either empirically
or by exploiting the error model of inlier observations. Given data with an additive
Gaussian error model, the cumulative χ2 distribution reflects the likelihood of the
parameters used to fit the data. Concisely illustrated, this happens as follows: If a
random variable Z ∼ N (0, 1) – an inlier observation – then χ2 ∼ Z2, which means
that high deviations from 0 are unlikely. After measuring deviations between ex-
pected and observed data, the monotonically increasing cumulative χ2 maps the
probability of Z not being normally distributed to the deviations. Hence, the cu-
mulative χ2 maps a high probability to outliers, because their measurements are
not normally distributed. Hartley and Zisserman suggest [HZ04, p.119] to com-
pute the RANSAC-threshold by rejecting 5% of the normally distributed inliers.

2.3. OPTIMIZATION 31

This way, the threshold coincides with the value that is mapped to 95% by the
cumulative χ2 distribution, and it can be computed if the variance of the Gaussian
error model is known. Although 5% of the inliers are rejected using this approach,
Equation 2.28 remains valid, since the true amount of outliers is unaltered.

A more detailed introduction to RANSAC is available in [HZ04, p.116-124]. There
are many derivatives of the original RANSAC procedure and a comprehensive
overview of them is given by Matas and Chum [MC11]. The method used in the
implementation is based on MSAC (M-estimator Sample and Consensus) [TZ00].
It differs from the original RANSAC algorithm in the scoring of models. While
the original method scores a sample based on the inlier count, MSAC takes the
quality of inliers into account. This is done by examining the error e of each
datum, given an estimated model. The model with the minimum overall-error C,
which is computed as follows, is chosen:

C =
∑
i

p(e) (2.29)

p(e) =

{
e2 if e2 < λ2

t

λ2
t else

Where λt is the RANSAC threshold.

Chapter 3

Camera models

The main subject of computer vision is to design computational methods to infer
knowledge from visual sensors. In order to do so, it is necessary to derive math-
ematical representations for the involved sensors. There are numerous camera
models that express these representations. An exhaustive comparison of camera
models and calibration methods is provided by Sturm et al. [Stu10]. In general,
camera models try to formulate forward and back-projection algebraically, where
forward-projection describes a mapping from Cartesian 3D coordinates to pixel
coordinates, and back-projection a mapping from pixel coordinates to a Cartesian
3D direction1. Usually, both mappings differ in complexity. Most visual SLAM
systems employ cameras that can be represented with the pinhole camera model.
For this reason, the pinhole camera model is briefly reviewed in the next section,
followed by omnidirectional camera models that are able to represent the hardware
introduced in Section 8.4 and the datasets discussed in Chapter 9.

3.1 Pinhole Model

The central-projection or pinhole camera model assumes that optical rays are
projected onto the image plane disregarding dioptric (lenses) or catoptric (mirrors)
elements. World points are mapped on the image plane through the camera center
C, also called the pinhole, as illustrated in Figure 3.1. Note that one could also
flip the image plane in front of the camera, creating a virtual image plane with

1Please note that in the context of bundle-adjustment the term back-projection is used re-
versely. The direction of projection should be clear when read in context though.

33

34 CHAPTER 3. CAMERA MODELS

Figure 3.1: Side-view of the pinhole camera model. C is the camera centre, f the focal
length, xc a point in space and f yz the vertical image of xc.

the same properties. Given a 3D point in homogeneous coordinates, this mapping
can be expressed as:

u = K xc (3.1)

u =

f 0 0
0 f 0
0 0 1

 xc

Where u = (wu,wv, w) is the projected point in homogeneous form and the Eu-
clidean plane at w = 1 constitutes the image. In practice, more parameters related
to the camera chip are involved in K. Additionally, it is necessary to transform
world coordinates to camera coordinates. Extending Equation 4.2 accordingly
yields:

u = KT x (3.2)

u =

α1 s u0 0
0 α2 v0 0
0 0 1 0

T x

u = P x

Now, x is a point in homogeneous world coordinates, T the world to camera
transformation matrix and P the compiled projection matrix. While α1 and α2

are related to the focal length and perform a scaling due to signal sampling, s
is a called skew and compensates for potentially misaligned rows. u0 and v0 are
translational components that are required to place the coordinate systems origin
correctly. Both transformations K and P are invertible, but only up to scale.
An in-depth discourse on the central-projection model can be found in [HZ04]
or [Cor11]. Important properties of the pinhole camera model are:

1. Straight lines are preserved

3.2. OMNIDIRECTIONAL MODELS 35

2. Parallel lines intersect at a vanishing point

3. Conics are mapped to conics

4. Angles are not preserved

3.2 Omnidirectional Models

One major drawback of conventional camera systems is that they offer a limited
field of view, whereas, in many applications, a large field of view is beneficial. Ex-
amples include motion tracking for robots or surveillance systems. In 1998, Baker
and Nayar [BN98] showed that catadioptric vision systems – systems where tradi-
tional cameras are combined with mirrors – are well-suited for large field of view
applications. They analyzed various catadioptric camera settings with different
kinds of mirrors and concluded that neither planar nor conical nor spherical mir-
rors are able to enhance the field of view as long as an effective single-view camera
is of interest. Instead, it is possible to use parabolic, hyperboloid or elliptical
mirrors.2 Single-view or central cameras are vision systems with a single center of
projection. In [Nay97], Nayar lists advantages of central cameras. For instance,
central cameras allow the generation of geometrically correct perspective images
by back-projecting pixel values onto a plane. Further, in [SP02], Svoboda and
Pajdla extend classical epipolar geometry to central catadioptric cameras. Using a
central camera for computer vision is not a necessary requirement however. Most
of the textbook [HKS08] is dedicated with non-central panoramic imaging, also
covering topics like 3D reconstruction.
Figure 3.2 illustrates how rays of light behave in a parabolic and hyperboloid mir-
ror setup. In both cases, the mirror exhibits a focus and rays of light directed to
this point are either reflected orthographically, as with parabolic mirrors seen in
Figure 3.2b, or directed towards another central point, as in Figure 3.2a. As a
result, parabolic mirrors have to be used in combination with a telecentric lens in
order to preserve a single effective view point. Since the application of telecentric
lenses has been avoided studiously in experiments, hyperboloid mirrors in con-
junction with regular camera systems constitute the standard catadioptric vision
device.
In [BN98], Baker and Nayar analyze resolution properties of catadioptric cameras
and conclude that the resolution is highest at the periphery of an omnidirectional
image, as in Figure 1.1b. At the blind spot in the center of the figure, the camera
is filming itself through the mirror, which is characteristic for central catadioptric
vision system.

2This was independently derived by Svoboda et al. as described in [Svo00a]

36 CHAPTER 3. CAMERA MODELS

(a) Camera with hyperboloidal mirror (b) Camera with parabolic mirror

Figure 3.2: Comparison of two popular catadioptric mirror types. While rays of light
directed towards the focus of a hyperbolic mirror intersect after reflection, rays are ori-
ented parallel to each other after being reflected by a parabolic mirror.

3.2.1 Hyperboloid Catadioptric Model

Analogously to the formulation of the pinhole camera model, it is possible to
derive a mapping from world coordinates to image coordinates given a catadioptric
camera system. This derivation has been performed by Tomáš Svoboda [Svo00a]
and is outlined in the following.

Assume that the Cartesian camera coordinate system originates at the focus point
of the hyperboloid – the z-axis aligned to the axis of the mirror. Given a point
xc = (x, y, z)> in camera coordinates, the mapping to pixel coordinates can be
realized as follows:

u = P


λx
λy
λz
1

 (3.3)

This actually performs two projections. The first projection maps xc to the hyper-
boloid surface by multiplying the camera coordinate by a factor λ. The resulting
vector is then transformed to a homogeneous coordinate and multiplied by a pin-
hole camera matrix P as in 3.1. λ can be computed by substituting a ray expression
into a two-sheeted hyperboloid equation, with the hyperboloid expression being
defined by:

(z + e)2

a2
− x2

b2
− y2

b2
= 1 (3.4)

3.2. OMNIDIRECTIONAL MODELS 37

Where e =
√
a2 + b2 is the mirror’s eccentricity, and both a and b are mirror

parameters. It has to be considered that the projection center of the pinhole
camera has to coincide with the second focus of the mirror, which is located at
t = (0, 0, 2e)>. Otherwise, the reflection of a ray that emerges from the pinhole
camera is not directed toward the focus of the mirror. A ray λxc that goes through
the origin of the camera frame and xc, intersects the mirror at:

λ =
b2(−ez ± a‖xc‖)
b2z2 − a2x2 − a2y2

(3.5)

Using this equation in conjunction with Equation 3.3 yields the complete mapping
from world points (in camera coordinates) to image coordinates. Equation 3.5 has
multiple solutions though. Svoboda showed that one has to pick either the greater
value of λ in case the results have different signs, or the smaller value in case both
results have a positive sign. The third theoretical combination, namely that both
results are negative, is not legitimate. The same approach from above also allows
to calculate the back-projection of an image coordinate, given as:

P−1u = λ

xy
1

−
 0

0
2e

 (3.6)

Where it is assumed that P−1 yields a homogeneous coordinate, which is trans-
formed to the mirror’s reference frame. Then, the intersection of this ray with
the mirror is given by choosing λ correctly. The point of intersection concurrently
corresponds to the direction of back-projection x̂c, with respect to the coordinate
frame at the focus. Again, λ can be computed by substituting the according ray
expression in Equation 3.4.
An alternative way to formulate the mapping between image and world coordinates
was given by Mičušík and Pajdla [MP03]. Exploiting the rotational symmetry,
they introduced the non-linear function g that maps from pre-calibrated image
coordinates to 3D-space:

xc ∼ g(u, v) = (u, v, f(u, v))> (3.7)

In this context, pre-calibrated means that the image coordinate is perfectly aligned
with the mirror’s z-axis and that horizontal mirror cross-sections are mapped to
circles in the image. This is illustrated in Figure 3.3. Consequently, the image co-
ordinate coincides with the first two components of the corresponding 3D-ray. The
last component of the ray is given by the function f , which depends on the image
coordinate. Thus, f incorporates the mirror design and adjusts the z-component of
the back-projected ray. This way of modelling catadioptric camera systems will be
revisited in the next sections. A detailed description of this formalism can be found
in the PhD theses of Branislav Mičušík [Mic04] and Davide Scaramuzza [Sca08].

38 CHAPTER 3. CAMERA MODELS

(a) (b) (c)

Figure 3.3: While (a) characterizes an image in pixel coordinates, the same pre-
calibrated image is illustrated in (b). Both are related by an affine transformation due
to digitizing and misalignments. (c) depicts the connection between the image space and
the reference frame at the mirror’s focus.

3.2.2 Unified Projection Model: Geyer and Daniilidis

Textbooks, such as [SNS11], refer to the model of Geyer and Daniilidis [GD00] as
a landmark in omnidirectional computer vision. Geyer and Daniilidis introduced a
unifying theory for central omnidirectional systems that allows the use of the same
principles for hyperbolic-, elliptical- and parabolic-catadioptric, as well as tradi-
tional perspective, cameras. The authors proved that each of the aforementioned
camera configurations can be modelled by projecting world points onto a unit
sphere and successively onto a plane. This projection procedure is parametrized
by the parameter3 l. Adjusting this parameter accordingly results in a projection
model that is isomorphic to one of the above. Figure 3.4 illustrates the nature of
these projections.

Assume that the reference frame is located at the center of a unit circle that
coincides with the mirror’s focus (or one of the foci). The z-axis is again aligned
with the major axis of the mirror. World points given in camera coordinates can
be projected onto the sphere by:

ẋ =
xc
‖xc‖

= (x, y, z)> (3.8)

Given a second center of projection at l = (0, 0,−l)> on the z-axis, points ẋ are
then projected onto a plane with distance 1 to the new projection center. This
results in the coordinates:

u = (
x

z + l
,

y

z + l
, 1)> = g(ẋ)−1 , (3.9)

3The original paper introduced two parameters, l and m. Here, for simplicity the notation
of [SNS11] is used, which assumes that l +m = 1. The overall scheme remains the same.

3.2. OMNIDIRECTIONAL MODELS 39

Figure 3.4: Visualization of the projection scheme presented by Geyer and Daniilidis.
A point is firstly projected onto a sphere, which is highlighted in blue in this figure, and
then projected onto a plane, which is highlighted in red.

which are relative to the second center of projection. A visualization of the pro-
jection scheme is given in Figure 3.4.
Performing equivalent projections, first onto a hyperboloid before projecting onto
the plane, also yields Equation 3.9 when l = 2e(4e2 + 4p2)−

1
2 , where e is the

eccentricity and p a quarter of the latus rectum of the mirror. The latus rectum
equals the diameter of the mirror at z = 0. As described in [SNS11], the mapping
from sphere to plane is bijective, hence, the back-projection is given by:

g(u) = g(x, y) =

 x
y

1− l x2+y2+1

l+
√

1+(1−l2)(x2+y2)

 (3.10)

Note that this expression conforms to the formulation of Mičušík and Pajd-
la [MP03]. The third component of g is equivalent to the function f in Equa-
tion 3.7.

3.2.3 Unified Projection Model: Scaramuzza

The possibly most widely used calibration method for omnidirectional cameras
was introduced by Scaramuzza et al. in 2006 [SMS06a], and an improved version

40 CHAPTER 3. CAMERA MODELS

was published by the same authors shortly afterward [SMS06b]. The projection
model of Scaramuzza et al. works in the same manner as the one of Geyer and
Daniilidis, but the function g is approximated using Taylor series expansion:

g(x, y) =

 x
y

a0 + a2p
2 + ...+ anp

n

 , (3.11)

where p =
√
x2 + y2. In [SMS06b], Scaramuzza et al. realized that it is possible

to drop the coefficient a1. This is due to the observation that a tangent at the
mirror4 surface at p = 0 is perpendicular to the z-axis. Hence, the derivative of
the polynomial at p = 0 must be 0, which forces the constraint a1 = 0.

3.2.4 Projecting onto Spheres and Cylinders

Especially for visualization purposes, it is common to back-project image intensity
values onto a spherical or cylindrical surface. Given a normalized vector xc ∼
g(x, y) in Euclidean 3D coordinates, the projection can be applied by expressing
xc in spherical or cylindrical coordinates respectively and by scaling the radius
and, if applicable, the elevation accordingly:

ζ(xc) =

rα
h

 =

 √x2 + y2

atan2(y, x)
z

 (3.12)

ζ(xζ)
−1 =

xy
z

 =

r cosα
r sinα
h


Θ(xc) =

rφ
θ

 =

√x2 + y2 + z2

atan2(y, x)
acos(z

r
)


Θ(xΘ)−1 =

xy
z

 =

r cosφ sin θ
r sinφ sin θ
r cos θ


Here, ζ is a mapping to cylindrical coordinates, while Θ maps to spherical coor-
dinates. The components r, α, h are radius, angle, elevation and the components
r, θ, φ are radius, altitude angle, azimuthal angle. The camera described in Sec-
tion 8.4 outputs images that are already projected onto the lateral surface of a

4This is actually true for any omnidirectional camera system, including fish-eye lenses.

3.2. OMNIDIRECTIONAL MODELS 41

(a) Cylindrical camera model (b) Equiangular camera model

Figure 3.5: Illustration of the cylindrical and equiangular camera model. While the
equiangular model is parameterless, the cylindrical model is described by r and h0. In
both cases, a cross-section of the image plane is highlighted in red and the path of light
in orange. Further, the camera up-vector is written as ŷ and the vertical image bounds
are marked as vmin and vmax.

cylinder. Such an image can be generated by sampling the surface in cylindrical
coordinates. These coordinates are then mapped to Euclidean ones, which are sub-
sequently mapped to image coordinates using the camera model. More details are
available in [PN97] and [BPA03]. Treating this projection process as a black-box5,
a camera model representing the projection to the lateral cylinder surface has to
be used, as explained in the following section.

3.2.5 Cylindrical and Equiangular Camera Models

A common application of cylindrical camera models is the representation of rotat-
ing cameras [HKS08, p.34-43]. These models are designed for non-central camera
systems though, and a more compact representation is available for single view-
point configurations. Smadja et al. discuss a central cylindrical camera model
in [SBD04], which is – for simplicity – subsequently referred to as the cylindrical
camera model.

In the vertical dimension, the cylinder model behaves like the pinhole camera mod-
el, where r translates to f and h0 translates to u0 or v0. The horizontal dimension

5The manufacturer of the camera described in Section 8.4 states: “We have our own pro-
prietary calibration method. However, the engineer said we are closer to Scaramuzza for the
calibration and we project the image onto a cylindrical surface.”[Spe15]

42 CHAPTER 3. CAMERA MODELS

on the other side is parameterless6, as the relative position of world coordinates
fully describes the angle of entry. Given r and h0, and using the notation of the
previous section, the mapping from 3D to image space is straightforward. Let xc
be an arbitrary point in 3D and (rx, αx, hx)

> = ζ(xc) be the corresponding cylin-
drical coordinate. Then the projection to the lateral cylinder surface is written
as (r, αx, h0 − rhx/rx)>. This process is illustrated in Figure 3.5a. As the surface
also substitutes the image plane, it follows that (u, v)> = (sxαx, h0 − rhx/rx)

>,
where sx = width/2π scales from radians to pixels due to image discretization.
Similarly, and as with the pinhole camera model, the parameter r is also scaled to
express discretization.

Another virtual camera model is the equiangular camera model7, which is sim-
ilar to the cylindrical model and was also used during experiments. Here, not
only the horizontal component is purely angle based and parameterless, as with
the cylindrical one, but also the vertical component. As a result, the equiangular
model is completely parameterless and angular differences are proportional to im-
age space pixel differences. It derives analogously to the cylindrical model: When
(rx, φx, θx)

> = Θ(xc), then (u, v)> = (sxφx, syθx)
>. Formulas for back-projection

are given in Equation 3.12.

6The trivial parameters of image width and height are neglected here, since they are not
subject to calibration.

7It is possible to construct equiangular catadioptric cameras, as described in [Cor11, p.272].
These cameras are non-central, however, and during experiments a purely virtual equiangular
camera has been used to create synthetic image sequences.

Chapter 4

Multi-View Geometry

Many of the mathematical principles required for visual SLAM belong to the scope
of multi-view geometry. The purpose of multi-view geometry is to accumulate the
information of several camera views to obtain a meaningful description of the
environment. In particular, the estimation of depth is only possible when at least
two views are available, as long as the camera is the only sensor. Since multi-
view geometry is commonly applied to a pinhole camera model, it is necessary to
transfer relevant concepts to arbitrary central camera models. The remainder of
this section provides such a transfer and shows which methods have to be adapted.

4.1 Epipolar Geometry

For the moment, assume that two images (I and I ′) of the same object are shot with
a pinhole camera. The subject of epipolar geometry is to describe the geometrical
relationship between the object and the two images. It is possible to associate a
point in image I to a line in I ′ and vice versa, given the camera transformation.
This means that a point u, which is expressed in normalized homogeneous image
coordinates in I, will be found on a line l′ in I ′. Further, the family of such
lines, which are called the epipolar lines, meet in a single point referred to as
the epipole. The above-mentioned relationship is called the epipolar constraint
and a vast variety of algorithms make use of it. There are two special cases
one has to consider: The point to line relationship is only valid when there is
a non-zero baseline t between the first camera center C and the second camera
center C ′. Further, the line l′ degenerates to a point in the case that u is placed
at the epipole. Also, it is possible that an epipolar line is outside of the image
window. A more detailed explanation can be found in textbooks, such as [HZ04]

43

44 CHAPTER 4. MULTI-VIEW GEOMETRY

Figure 4.1: Illustration of the epipolar constraint. C, C ′ and x form the epipolar plane.
When projecting the ray through C and x onto the image plane I ′ one gains the epipolar
line l′ which is defined by the intersection of the epipolar plane with the image plane I ′.

or [FP02]. Figure 4.1 visualizes the epipolar constraint. In algebraic terms the
epipolar constraint can be derived by forcing u, u′ and t to be coplanar:

u(t×Ru′) = 0 (4.1)
u>[t]×Ru

′ = 0

u>Eu′ = 0

Where R is an orthonormal matrix rotating from reference frame C ′ to C and
t = C ′ − C. E = [t]×R is called the essential matrix that encapsulates the
epipolar constraint. The plane spanned by C, C ′ and x is referred to as the
epipolar plane.

A geometric interpretation of the essential matrix would be that it maps a point
observation to the normal of this plane. By examining Equation 4.1 or Figure 4.2,
one can see that the epipolar constraint does not only apply to projective space
P2, but also to Euclidean space R3 and, thus, can be used with every camera
that has a single (effective) viewpoint. One advantage of the pinhole camera
model is, however, that the mapping between homogeneous coordinates and pixel
coordinates is trivial. Such a direct mapping is not possible for the cylindrical
camera model or omnidirectional camera models in general. Hence, a intermediate
mapping step between pixel and 3D Euclidean camera coordinates is required in
order to use the epipolar constraint in image space.

McMillan and Bishop introduced this mapping in 1995 [MB95] and observed that
cylindrical projections to image space do not preserve lines. More specifically, the

4.1. EPIPOLAR GEOMETRY 45

Figure 4.2: Illustration of the epipolar constraint for a cylindrical camera model.

intersections of (epipolar) planes with a cylinder are mapped to sinusoids in image
space. This can be derived as follows:

n = t×Ru′ (4.2)
nu = 0

nx sinα + nyh+ nz cosα = 0

h = − 1

ny
(nx sinα− nz cosα)

Where n is the normal of the epipolar plane and u is expressed in cylindrical coor-
dinates, as shown in Equation 3.12. Substituting this to obtain image coordinates
leads to:

y = y0 −
r

ny
(nx sinα− nz cosα) (4.3)

With this equation it is simple to draw the epipolar line on the camera image
by iterating over x = sxαx, where the parameters are the same as described in
Section 3.2.5. An equivalent mapping to omnidirectional images as shown in Fig-
ure 1.1b was proposed by Svoboda et al. [SP02, SPH98]. It is shown that in the
presence of central catadioptric cameras epipolar lines are mapped to conics in
image space.

4.1.1 Essential Matrix Estimation

The computation of the E-matrix can be performed similarly to the more com-
mon computation of the F -matrix1. Assuming that a set of corresponding points

1F = K−TEK−1 is a generalization of the E-matrix and incorporates camera parameters.
It can be used to operate on homogeneous image coordinates, when a pinhole-camera is present.
It is not used in the remaining implementation and is only mentioned here to put the method
into context.

46 CHAPTER 4. MULTI-VIEW GEOMETRY

{(u1,u
′
1), ..., (u8,u

′
8)} is known, by matching salient image features, for instance,

then Equation 4.1 yields one (in the elements of E linear) equation for each corre-
spondence. Rearranging the matrix elements of E in a column vector e, the linear
system has the following form:

(4.4)

u>Eu′ = Ae =

[
x′1x1 x′1y1 x′1z1 y′1x1 y′1y1 y′1z1 z′1x1 z′1y1 z′1z1
...

...
...

...
...

...
...

...
...

]
e = 0

For comparison, performing the same multiplications with the F -matrix leads to:

u>Fu′ = Af =

[
x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

]
f = 0 (4.5)

Being a 3×3-matrix,E has 9 entries, but as the aforementioned system of equations
is homogeneous, 8 points are sufficient for solving it. Because E represents a
rotation with 3 degrees of freedom and a translation with 3 degrees of freedom,
but is only defined up to scale, it has 5 degrees of freedom in total – less than the
F -matrix. There are methods, like the one proposed by Li and Hartley [LH06]
that exploit this property and solve the E-matrix using 5 correspondences only.
The implementation discussed later, however, uses a slightly modified version of
the 8-point algorithm, since the 8-point algorithm has been tested widely and is
used in state-of-the-art SLAM methods, such as ORB-SLAM [RRKB11]. An in-
depth discourse on the algorithm can be found in [HZ04, p.279-283]. The adjusted
implementation, which is independent of the camera model, proceeds as follows:

1. For each point observation u1, ...,u
′
8 compute the normalized back-projected

vector û1, ..., û
′
8 using the camera model.

2. Set up a linear homogeneous equation system using Equation 4.4 and at least
8 point correspondences.

3. Compute the singular value decomposition of the system. The singular vector
with the smallest singular value represents an unconstrained E.

4. Enforce constraints by computing another singular value decomposition of
E, setting the first two singular values to be equal and the last one to be 0.

A similar approach is described by Bunschoten and Kröse in [BK03] and Kawanishi
et al. [KYK11]. Hartley and Zisserman explain the process of extracting camera
motion, given the essential matrix in [HZ04, p.257-259].

4.2. TRIANGULATION 47

4.2 Triangulation

In the domain of computer vision2, 3D reconstruction refers to the process of in-
ferring three dimensional shape information from a set of two dimensional images.
Assume that a point x is given in the world coordinate system, which can be
observed in two images with the coordinate u and u′ respectively. When the two
images (I, I ′) belong to two camera views with known camera parameters, then
the objective to calculate x from u and u′ is called the triangulation problem.
Even though this sounds very feasible at first glance, it is not trivial to calculate a
good estimate when dealing with different sources of noise. After all, one cannot
assume that the back-projections of u and u′do intersect and it has been shown
that different solutions vary in precision, as described by Hartley et al. [HS97].
Researchers have been addressing this problem for more than two decades and are
still doing so, due to the importance of the problem. Modern approaches try to
relax the precision requirements of camera parameters and allow the incorpora-
tion of an arbitrary number of views while keeping the computational cost low.
Such an approach is proposed by Recker et al. [RHFJ13] and further examined by
Hess-Flores et al. [HFRJ14].

The most popular triangulation approach is linear triangulation, as described by
Hartley et al. in [HGC92]. Even though it is well known that this method is
rather imprecise, i.e. it does not minimize the geometric error and is not projec-
tive invariant, it is commonly used due to its speed and simplicity. State-of-the-art
visual SLAM systems such as ORB-SLAM by Mur-Artal et al. [MAMT15] rely on
linear triangulation and on the fact that successive optimization methods will com-
pensate for the error. The principles of linear triangulation are simple: Given a
point x in homogeneous world coordinates, which is regarded as projective point
u = d(u, v, 1)>, and u′ = d′(u′, v′, 1)> in two camera frames so that u = Px and
u′ = P ′x for known affine camera transformations P and P ′; then by performing
the matrix multiplications and by doing few rearrangements, one gets an equation
system of the form Ax = 0. There are different methods for solving homogeneous
equation systems, for example the method of Lagrange or linear least squares. As
the solution of a homogeneous equation system is only defined up to scale, the
solution has to fulfill an extra condition like forcing the last component to be 1,
which is already required here. Since the definition of u and u′ presume a pinhole
camera model, this method is not directly applicable to the camera models used
later. Instead, one could define xc = d xc‖xc‖ = Px and x′c respectively, where xc
is a normal vector pointing towards x in Euclidean camera coordinates and can be
calculated using the camera model. This could also be rearranged to a homoge-
neous system of the formAy = 0, where y is x stacked on top of (−d,−d′, 1)> and

2Please note that triangulation refers to a different process in computer graphics.

48 CHAPTER 4. MULTI-VIEW GEOMETRY

Figure 4.3: Illustration of the triangulation problem. Here, xm denotes the solution
of midpoint triangulation. By assuming that the back-projections of u and u′ coincide
with two edges of the triangle given by C, C ′ and x, the length of the respective edge
can be computed using θ and θ′.

A is a 6 × 6-matrix. The quality of such an estimation is questionable, however,
because the distances d and d′ of x to the corresponding camera center are not
constrained to x itself. Another way to use linear triangulation with a cylindrical
camera model would be to assume a local pinhole camera model by modifying P
and P ′ accordingly. But then the error would be strongly related to the distance
of x in camera coordinates to the xz-plane of the camera frame.

The midpoint method presents another way of solving the triangulation problem
and has also been frequently suggested in literature, as in [FP02]. It supposes that
x is located in the middle of the two back-projections u and u′. By exploiting
that the shortest connection between two rays is perpendicular to both of them,
the midpoint xm can be calculated easily:

n̂ = x̂c ×Rx̂′c (4.6)
C + dx̂c + sn̂ = C ′ + d′Rx̂′c

⇒ t = dx̂c + sn̂− d′Rx̂′c
⇒ xm =

1

2
(dx̂c + t+ d′Rx̂′c)

Where C ′ and C are the camera centres and R is the rotation matrix from C ′

to C, while t is the translation. The second line of Equation 4.6 provides three
linear equations with three unknowns. After solving this system, the last line
of the equation can be used to determine the midpoint relative to C. Although
Hartley et al. [HS97] have shown that the midpoint method results in inferior

4.2. TRIANGULATION 49

precision in 1996, it is still used in the domain of omnidirectional vision because it
can be applied without modification and is very fast. For example, Schönbein et
al. [SRL13] used the midpoint method in 2014 to perform trifocal omnidirectional
computer vision.

In 2001, Bunschoten et al. [BK01b] presented a technique for range estimation from
a pair of omnidirectional images. They also used a cylindrical camera representa-
tion and suggested computing the depth values d and d′ by examining the triangle
formed by C, C ′ and x. After computing the angles θ and θ′, as illustrated in 4.3,
they used the rule of sine to compute d = ‖C ′ − C‖ · sin(θ) · (sin(θ − θ′))−1 and
d′ = ‖C ′−C‖ · sin(θ′) · (sin(θ− θ′))−1 based on angular disparity. This procedure
does not minimize any error criterion, however, it is sensitive to inaccuracies and
is more expensive than the midpoint method. Schönbein and Geiger use the same
technique to obtain disparity maps in a setup with two omnidirectional cameras,
in [SG14].

In order to produce minimal triangulation errors, Hartley et al. [HS97] formulated
the minimization criterion:

minimize e(u, ū)2 + e(u′, ū′)2 (4.7)
subject to ūF ū′ = 0

Where ū and ū′ are points as close as possible to u and u′ while fulfilling the
epipolar constraint, e(∗, ∗) measures the Euclidean distance and F is the funda-
mental matrix. They also offered a polynomial method to solve this optimization,
known as optimal triangulation. Kanatani et al. independently proposed the same
idea in [KSN08], but designed an iterative linear method to optimize the same
error function. Torr and Zissermann [TZ97] observed that both methods agree to
3 or 4 significant figures while Kanatani’s method is considerably faster.

Lindstrom [Lin10] also remarks that the polynomial method is expensive to calcu-
late, may suffer numerical stability and is non-trivial to implement. He developed
an iterative method based on the work of Kanatani et al., which converges faster.
Since his method only requires two iterations in most cases, he also provides a non-
iterative version of his algorithm. When Lindstrom compared the computational
time of his algorithm to optimal, linear and midpoint triangulation, he discov-
ered that it performed around 50 times faster than optimal triangulation, 45 times
faster than linear triangulation and 3 times faster than midpoint triangulation.

Lindstrom’s method has two disadvantages that are of interest here. First, it is ex-
plicitly designed to work with two views and does not scale to three or more views.
Hence, to minimize the error of a point that is present in multiple images, addition-
al optimization techniques (commonly bundle-adjustment) are required. Secondly,
the algorithm proposed by Lindstrom works with the pinhole camera model. Even

50 CHAPTER 4. MULTI-VIEW GEOMETRY

Figure 4.4: The multi-view triangulation by Recker et al. minimizes the angular error
between re-projected image coordinates (red) and a scene point (black) by iteratively
adjusting x.

though it is possible to adapt the method for arbitrary single viewpoint models,
the accuracy and performance analysis of Lindstrom becomes invalid. The same
arguments are valid for the method of Nordberg [Nor08].

Another group of triangulation methods tries to minimize the error for more than
two views. While there are closed-form optimal solutions for the three view trian-
gulation case, like the method of Stewenius et al. [SSN05] and Byröd et al. [BJr07],
such a method does not exist for the N-view case. Further, it is known that
these methods are computationally expensive, as explained by Kukelova et al.
in [KPB13] and are therefore impractical especially in the real-time domain. These
problems have been addressed by Recker et al. [RHFJ13] by introducing a non-
optimal angular-based cost function. Instead of working in the image space, Recker
et al. back-project each observation of a point and try to find the 3D-coordinate
that results in the lowest angular error with each back-projected ray. This ap-
proach is visualized in Figure 4.4, where red arrows correspond to reprojected
point observations labeled u, and x is a point whose error is evaluated. There
are black arrows, one of them is labeled x̂c, pointing towards x in each camera
frame. The error function subject to minimization sums up the angular differences
between black and red directions, using the dot-product as similarity function:

e(x) =
1

‖I‖
∑
i∈I

(1− x̂ci ◦ ûi) (4.8)

Here ûi denotes the re-projection of the image coordinate u of the i-th camera
frame. On the first glance, e(x) might seem to be linear, which is not true since

4.2. TRIANGULATION 51

Figure 4.5: Illustration of the camera positions used in the examples. The line between
T1 = (0, 0, 0)> and T2 = (0, 0, 1)> always constructs the shortest distance between the
back-projected rays that are highlighted blue.

x̂ci has to be normalized in each step, introducing non-linear terms. In order to
minimize e(x), Recker et al. suggest using gradient descent. The advantages of
this approach are that an arbitrary number of camera frames can be used for tri-
angulation and that every single-view camera model is supported. A disadvantage
is, however, that Equation 4.8 does not formulate an optimal error criterion, be-
cause it discards image space information. The traditional optimality criterion of
Equation 4.7 on the other hand implies that point observations in the image space
are normally distributed around the “true” pixel location. Without this implica-
tion, i.e. ignoring image space completely, the best cost function would be of the
form e(x̂c1 , x̂c2) = ∠(x̂c1 , û1)2 +∠(x̂c2 , û2)2, which is very similar to Equation 4.8,
also expressing that the directions of the re-projections should be altered as little
as possible. In this sense, the angular triangulation method shares commonalities
with the principle behind bundle-adjustment, while optimal triangulation shares
the exact same idea – fixed to two views though. Bundle-adjustment is covered in
Section 5.3.1.

To conclude this section, the next examples illustrate the behavior of some of the
methods discussed earlier. In each of them, it is assumed that two cameras observe
the same point and that the shortest distance d = 1 between the re-projected skew
rays is given by the line connecting T1 = (0, 0, 0)> and T2 = (0, 0, 1)>, where T1

projects to the point observation in frame 1 and T2 to frame 2 respectively. Note
that the scale is arbitrary here and if the viewpoint of the first camera is supposed
to be C1 = (0,−1, 0)>, then the only remaining variable is the position of the
second camera in the z = 1 plane: C2 = (x2, y2, 1)>. See Figure 4.5 for an
illustration of the camera configurations.

52 CHAPTER 4. MULTI-VIEW GEOMETRY

Example 1: In the initial example, the position of the second viewpoint is chosen
to be C2 = (−1, 0, 1)>. The contours of the optimal cost function of Hartley et
al. and the contours of the cost function of Recker et al. in this rather extreme
example – the back-projected rays are oriented perpendicular to one another – are
compared in the first column of Figure 4.6. Both functions have their minimum
at (0.25, 0.25, 0.5)> surrounded by a smooth cost increase. The midpoint method
would suggest to use the point (0, 0, 0.5)> for triangulation. Triangulating the
points directly, as done by Bunschoten et al. in [BK01b], would yield two possible
results, one on each of the back-projected rays: (0.5, 0, 1)> and (0, 0.5, 0)>.

Example 2: Now, assume C2 is located at (−3, 0, 1)>. This means the back-
projected rays are still perpendicular with the same distance, but with one camera
center shifted further away from the origin. At this configuration the naïvety of
the midpoint method becomes obvious, which still suggests coordinate (0, 0, 0.5)>.
Although C1 is nearer at the presumable location of the 3D-point, C2 has as
much influence on the triangulation as C1. Imagine C2 was at (−∞, 0, 1)>, then
the first camera solely would compensate the error and the triangulated point
would still be at (0, 0.5, 0)>. The results of angular and optimal triangulation are
still conformable, as illustrated in the second column of Figure 4.6. Here, direct
triangulation yields: (0.191, 0, 1)> and (0, 0.427, 0)>.

Example 3: In this last example, the angle between back-projected rays is 45◦

with C2 = (−1,−1, 1)>. Under these conditions, the difference between the an-
gular and optimal cost function becomes relatively large, as the last column of
Figure 4.6 shows. Yet, compared to direct triangulation, which yields (1, 1, 1)>

and (0, 1.449, 0)>, or midpoint triangulation – which did not change in this ex-
ample either, since the properties of the perpendicular connecting line did not
change – the results are promising. Additionally, the configurations chosen here
exhibit a high perpendicular offset to the baseline ratio in order to emphasize the
differences of the methods. More realistic data will result in a better performance
of all methods, as long as the baseline is large enough.

For each method, the absolute error in all three examples is listed in Table 4.1.
Even though only a sparse set of examples was evaluated here, it became clear that
angular triangulation performs better than midpoint and direct triangulation.

4.2. TRIANGULATION 53

Angular Triangulation Midpoint Triangulation Direct Triangulation
Ex. 1 0 0.354 0.612 / 0.612
Ex. 2 0.133 0.399 0.903 / 0.348
Ex. 3 0.44 1.024 0.619 / 1.017

Table 4.1: Absolute error of triangulation methods when compared to optimal trian-
gulation. While angular triangulation performed best in all three examples, and direct
triangulation performed consistently bad, in example 3 midpoint and direct triangulation
performed similarly bad.

Optimal cost function
at 90◦ (0.25, 0.25, 0.5)>

Optimal cost function
at 90◦(0.034, 0.101, 0.116)>

Optimal cost function
at 45◦(0.577, 0.842, 0.577)>

Angular cost function
at 90◦(0.25, 0.25, 0.5)>

Angular cost function
at 90◦(0.031, 0.093, 0.014)>

Angular cost function
at 45◦(0.417, 1.219, 0.417)>

Figure 4.6: Contours of the optimal cost function of Hartley et al. compared to contours
of the angular cost function of Recker et al. The color coding ranges from blue (low error)
over green to red (high error). The optimum is marked by a black dot. The volume of
all six plotted squares equals to 1, and the first two columns and the last column show
exactly the same range.

Chapter 5

Monocular SLAM

Monocular structure from motion algorithms have been being developed for more
than three decades now [Har87, Lon81]. Structure from motion traditionally refers
to computationally expensive methods, such as [FZ98], which evaluate a whole
image sequence in order to find camera poses and world coordinates. The dominant
optimization technique in this area is bundle adjustment. Even though Harris
and Pike described a monocular SLAM system in 1987 [HP87], the first online
monocular visual SLAM method, which performs mapping and tracking in real-
time, was presented by Davison in 2003 [Dav03]. Davison’s method, later called
MonoSlam [DRMS07], is based on EKF-SLAM [WB95]. The system was limited
in map size and required noticeable user interaction.

Both of the aforementioned drawbacks were overcome by Klein and Murray in
their seminal PTAM (parallel tracking and mapping) publication [KM09]. In
contrast to previous work, Klein and Murray separate the mapping and tracking
task, which allows fast tracking, while the map is refined using bundle adjustment.
That bundle-adjustment is not limited to the offline structure from motion domain
was shown by Engels et al. [ESN06]. At its core, PTAM maintains a map of sparse
3D-points that correspond to salient features (keypoints) in camera images, which
is used for mapping and tracking – more details are provided in Section 5.3.

An alternative approach is to reconstruct a dense 3D map and to use this for
tracking, as proposed by Newcombe et al. [NLD11]. Such methods are also called
direct or dense methods , since they extract 3D points for as many pixels as possi-
ble. They have the advantage that more data of the image is effectively used by
the SLAM system and researchers concluded [ESC14, NLD11, FPS14] that they
are more robust as well as more accurate than keypoint-based methods. Both
techniques, which are based on keypoints or performed directly, are still subjects

55

56 CHAPTER 5. MONOCULAR SLAM

of active research and the current state-of-the-art method in terms of accuracy –
ORB-SLAM [MAMT15] – is a keypoint-based method1.

5.1 Omnidirectional Monocular SLAM

Due to the popularity of central-projection cameras, most visual SLAM systems
presume a pinhole camera model. Omnidirectional computer vision has also been
researched intensively, but most SLAM-systems support either the pinhole or a
specialized omnidirectional camera model.

Some of the early works on omnidirectional computer vision are referred to in
Section 1.1. This section continues to elaborate on the more advanced methods
that have been proposed. Inspired by the work of Davison, published methods
are still facilitating EKF-SLAM for omnidirectional monocular SLAM [RPG10b,
RPG10a, GRMG11, PO13]. This might be due to the fact that landmarks are
longer visible when an omnidirectional sensor is used. Hence, the drawback that
EKF-SLAM scales badly with respect to map size is less prominent. But these
methods would not be applicable for a large-scale SLAM system nevertheless.
An omnidirectional monocular SLAM system based on Fast-SLAM was proposed
by Gamallo et al. [GMR13] in 2013. Even though Fast-SLAM performs more
efficiently than EKF-SLAM, their processes of tracking and mapping are strongly
coupled. This neglects a more profound map optimization, since tracking has
to be executed at framerate. With PTAM, Klein and Murray demonstrated the
advantages of a decoupled mapping and tracking component.

Other methods put strong assumptions on the environment. The approach of Bur-
bridge et al. [BSCN08], for example, only maintains a 2D map of the environment,
or the work of Schoenbein and Geiger [SG14] assumes an urban Manhattan world.
In [SS08], Scaramuzza and Siegwart presume planar motion.

A very recent direct method that supports the unified projection model is proposed
by Caruso et al. [CEC15]. It is based on LSD-SLAM and arguably the most similar
one to CAM-SLAM in terms of flexibility. A strength of this omnidirectional LSD-
SLAM implementation is that it handles aggressive camera motion with strong
rotations well. It was presented too late to be investigated properly, though. On a
first inspection, it would not support the camera models discussed in Section 3.2.5,
and hence, not the V.360◦.

1This statement does not consider the omnidirectional LSD-SLAM implementation that has
just been proposed by Caruso et al. [CEC15] and might be more accurate. A superficial com-
parison of Table 2 of their work to Table 9.1 indicates, however, that the accuracy lies between
the one of LSD- and ORB-SLAM.

5.2. KEYFRAME GRAPHS 57

5.2 Keyframe Graphs

1

2
3

4

5

15 67

94

130 102
144

121

163

99

67

(a) While vertices of the covisibility graph represent keyframes, its edges
denote the number of commonly observed map points. In the presence of
plentiful keyframes, the number of edges might increase considerably.

1

2
3

4

5

130 102
144

121

163

99

(b) Although the essential graph is still connected strongly, the number of
edges is bound. Black edges belong to the spanning tree of the covisibili-
ty graph and green edges were kept from the covisibility graph due to the
threshold (here λc = 100) condition.

Figure 5.1: Comparison of a covisibility and essential graph.

Direct methods and (modern) keypoint-based methods share the same overall
ideas. While the camera is moving in space, a subset of tracked image frames,
so-called keyframes, is selected and used for mapping. The very latest frame
is then tracked using the created map. One might notice that this poses a

58 CHAPTER 5. MONOCULAR SLAM

chicken-and-egg problem, which is tackled in Section 5.5. To enable global map
optimization, direct methods [KSC13, ESC14], as well as keypoint-based meth-
ods [SDMK11, MAMT15], maintain a keyframe graph. Even though details differ,
the following concept remains unaltered: Neighboring keyframes2 become con-
strained vertices and graph optimization techniques are used for optimization.
The pose graph, for instance, constraints keyframes by their relative poses and is
frequently used for loop closing. In case a keypoint-based method is employed,
neighboring keyframes could be defined to be the ones that observe the same map
points. Mei et al. [MSN10] suggest constructing a covisibility graph, whose edges
represent the number of commonly observed points. Such a graph is illustrated in
Figure 5.1a. The essential graph, which is described by Mur-Artal [MAMT15], is
the conjunction of the spanning tree of the covisibility graph with the set of edges
that have a value higher than a threshold – where the spanning tree is chosen to
exhibit edges with highest covisibility values. Figure 5.1b shows an essential graph.
Neither the essential graph nor the covisibility graph are used for constraint op-
timization directly. Instead, they are used to identify neighboring keyframes and
help to realize effective pose graph optimization or bundle-adjustment.

5.3 Keypoint-based Methods

A keypoint is a point in a camera image that exhibits special structure and that
can be distinguished from other points because of its salient features. More impor-
tantly, keypoints are desired to be invariant to translation, rotation and scaling.
This means that the same keypoint can be identified in two or more images, even
though the camera underwent substantial motion in the meantime. At least three
steps have to be performed when matching keypoints of two images. Firstly, salient
image points have to be detected in both images. Secondly, a comparable descrip-
tor for the identified locations has to be generated. The last step is to match the
keypoints by comparing the descriptors. Well-known methods for the first two
steps are SIFT [Low04] and SURF [BTVG06]. Since both methods are rather de-
manding with respect to processing time, more efficient alternatives like the FAST
feature detector [RD06] or the BRIEF descriptor [CLSF10] have been proposed.
ORB [RRKB11] uses both of the aforementioned methods to provide “an efficient
alternative to SIFT or SURF”. A dedicated matching technique was proposed by
Muja and Lowe [ML09] and is called FLANN.

Now, assuming that a camera model is provided, the method explained in Sec-
tion 4.1.1 can be applied for camera motion estimation. The required correspon-

2Here, the term neighboring does not necessarily imply that the frames are located near to
each other.

5.3. KEYPOINT-BASED METHODS 59

dences are found using one of the keypoint detection, extraction and matching
methods. In fact, one could try to design a monocular visual odometry system
simply by repeating the essential matrix estimation. Since the essential matrix
decomposition lacks any scale-consistency checks though, such a system would
perform poorly. This is one of the reasons to create a map by triangulating key-
points after the motion was estimated: When the camera is tracked relatively to a
map, the scale is theoretically in accordance with the map. Most modern monoc-
ular SLAM algorithms are inspired by PTAM and differentiate between frames
and keyframes. Mapping is accomplished using keypoints that were covisible in
multiple keyframes. To decide whether or not a frame should be elevated to a
keyframe, most methods check for the satisfaction of a number of conditions. In
PTAM, these conditions are:

1. The frame was tracked accurately

2. The latest keyframe is at least 20 frames old

3. The distance to the nearest keyframe must exceed a certain threshold3

The heuristic of the state-of-the-art ORB-SLAM method is similar, but addition-
ally demands that at least 50 keypoints are tracked in the frame and, in contrast to
imposing a minimum distance, a minimum visual change is enforced. This is done
by requesting that less than 90% of the keypoints of the selected keyframe are vis-
ible in the current frame. A result of this modified condition is that keyframes are
also created when the camera movement is mainly rotational. In such a situation
ORB-SLAM could triangulate new map points using the covisibility graph, while
PTAM would eventually lose tracking. Furthermore, a condition related to global
relocalization is used in ORB-SLAM.

One purpose of the conditions is to restrain keyframe creation, as the mapping
complexity typically is O(N3) in the number of keyframes included in optimiza-
tion [ASSS10].

5.3.1 Bundle-Adjustment

The prevailing optimization approach used in the structure from motion domain
and nowadays also in the scope of keypoint-based monocular SLAM is bundle-
adjustment. It aims at optimizing camera and triangulated map point positions

3The original paper [KM09] had a typographical error, stating that the distance to the nearest
keypoint must exceed a certain threshold. This can be verified when examining the function
NeedNewKeyFrame(KeyFrame &kCurrent) in the MapMaker.cc file of the PTAM source-code,
which is available at github [KM13].

60 CHAPTER 5. MONOCULAR SLAM

by minimizing the reprojection error. It is also possible to predefine parameters
(like fixing camera poses), or to estimate even more parameters (like intrinsic
camera parameters) at the same time. For the two-view case, the problem could
be formulated as follows:

argmin
x1,...,xn,T 1,T 2

n∑
i=1

‖ui1 − π(T 1
−1xi)‖2+‖ui2 − π(T 2

−1xi)‖2, (5.1)

where x1, ...,xn and T 1,T 2 are the world coordinates of map points and camera
frame poses, respectively. WhenR and t are rotation and translation of a transfor-
mation from world to camera coordinates T 1,2

−1, then denotes T 1,2
−1xi = Rx+ t

a camera coordinate of x. π performs the projection from camera to image co-
ordinates and depends on the camera model at hand. Lastly, ui1 and ui2 are
the observed image coordinates, belonging to the position of a salient image fea-
ture. The concept of formulation 5.1 is similar to the one of 4.7: The image space
errors between the projections of the reconstructed 3D points and the observed
points have to be minimized. The difference is that the epipolar constraint is
neglected here and that the camera poses are optimized as well. Also, multiple
points are considered simultaneously in Equation 5.1. An analysis of the struc-
ture of the bundle-adjustment problem and implementation considerations are
provided by Triggs et al. in [TMHF00]. As mentioned by Jeong et al. [JNS+10],
bundle-adjustment is often performed using Levenberg-Marquardt optimization,
but alternatives, which are, for instance, based on Powell’s dog leg non-linear least
squares optimization [LAo05], are also available. The implementation discussed
later represents bundle-adjustment as a graph optimization problem, as depicted
in Figure 5.2. It expresses transformations using the corresponding Lie algebra.
Since map point positions and camera poses are to be optimized, they constitute
the parameters and are vertices in the graph. The constraint states that 3D points
projected to image space have to be close to their observed position. The cost
function of each constraint is the squared absolute error in image space, as in
Equation 5.1. Ultimately, the graph optimization software g2o uses Levenberg-
Marquardt least squares optimization to perform bundle-adjustment. Therefore, a
realistic initial estimate is required in order to reach an, ideally global, optimum.
Given enough camera movement, the map generated by a visual SLAM system
becomes too big to be feasible for online bundle-adjustment after a short period
of time. Consequently, only a local map with limited keyframes and map points
is used for mapping. An effective way to select the local map was proposed by
Strasdat et al. [SDMK11]. Around the currently active keyframe, an active window
of additional keyframes is selected based on their covisibility. In their work, they
split the active window into an inner and outer window. While the inner window is
subject to bundle adjustment, the outer window acts as an additional stabilizer by

5.3. KEYPOINT-BASED METHODS 61

Figure 5.2: Bundle-adjustment posed as graph-optimization problem. Blue vertices
represent the camera poses and orange vertices point positions that have to be optimized.
Red dashes on the image planes illustrate the errors of constraints. There are point-to-
camera constraints only – neither point-to-point, nor camera-to-camera constraints are
part of bundle-adjustment.

introducing pose-pose constraints. Mur-Artal et al. [MAMT15] also follow a double
window strategy. They include the outer window keyframes in bundle-adjustment,
but fix their poses.

5.3.2 Tracking

SLAM systems in general estimate the pose of the robot based on a motion
estimate, and monocular SLAM is no exception to this. While some applica-
tions [KJLS14] employ a Kalman filter in order to include higher order informa-
tion, i.e. acceleration components, constant velocity motion models also proved
to predict the camera pose good enough [MAMT15]. More specifically speaking,
camera poses are frequently represented using the Lie group SO(3) or Sim(3) and
relative poses are of the form T−1

1 T 2, where T 1 and T 2 are elements of the ac-
cording group. Hence, considering the last two succeeding camera poses, the next
pose is estimated by T 3 = T 2T

−1
1 T 2.

Given the initial pose estimate, the camera position is refined using local map
information. For this reason, map points of covisible keyframes are projected to
the current frame and matched with nearby image features. The resulting corre-
spondences are then used to perform bundle adjustment, optimizing the current
camera position only. This approach was already proposed in the PTAM publi-
cation and more recent methods fine-tuned the implementation for their needs.

62 CHAPTER 5. MONOCULAR SLAM

For example, the PTAM application does not maintain a covisibility graph and
additional matching criteria, such as including the mean observation direction of
map points, were employed by Mur-Artal et al. [MAMT15].

5.4 Direct Methods

Before the introduction of dense monocular SLAM methods, state estimation was
either filtering-based (EKF-, FAST-SLAM) or based on bundle-adjustment. New-
combe et al. presented another strategy labeled dense tracking and mapping
(DTAM) [NLD11] that differs from the former ones by (potentially) involving
complete images in optimization. As mentioned earlier, the overall concept is com-
parable to the one of PTAM, although the optimization back-end works entirely
distinctly. Assuming that a dense reconstruction of the environment is already
available and that a motion-based estimate of the current camera pose was pre-
dicted, the camera is tracked by iteratively minimizing the photometric error. The
photometric error refers to the (sum of) pixel value differences – L1-norm [NLD11],
or squared L2-norm [ESC13] – between the actual current image and the image
generated by projecting the dense map to the estimated camera location. One can
think of this procedure as moving a virtual camera and comparing the projected
virtual camera image to the real one. Mathematically, the photometric error is of
following nature:

e =
n∑
i=1

‖I1(ui)− I(π(xc
i)‖1,2, (5.2)

where Ir, I maps from image coordinates to pixel intensity values and ‖·‖1,2 ex-
presses that the value is either squared or not, depending on the error-norm. The
major difference from Equation 5.1 originates from comparing these intensity val-
ues rather than image space (pixel) offsets. Moreover, e is evaluated densely in
contrast to the cost function of 5.1. The reasoning behind the photometric error
derives from the constant brightness assumption: When the image of an object
moves, it does not change brightness. Hence, e would converge to a global min-
imum near a perfectly tracked camera, if it wasn’t for noise and if the constant
brightness assumption was completely true. Since actual dense monocular SLAM
systems track the current frame relatively to a selected reference keyframe and
depth image, literature describes the photometric error in a slightly more elabo-
rate fashion:

e =
n∑
i=1

‖Ir(ui)− I(π(Tπ−1(ui, di))‖1,2 (5.3)

5.5. INITIALIZATION 63

Here, π−1(u, d) denotes a back-projection of u to a 3D coordinate at depth d.
The resulting 3D point is then transformed from one camera coordinate system to
the other one using the relative transformation T and finally projected to image
space again. Note that in contrast to the formulation of Newcombe et al. [NLD11,
eq.2-3] all camera parameters are implied in π here, hence, multiplying with K
would be redundant4. The w(ui,T) = π(Tπ−1(ui, di) component that maps from
image to image space is also called warp function. After system initialization, all
parameters except the relative transformation are available. The Lucas-Kanade
image alignment algorithm presents a method to minimize e using nonlinear op-
timization. A comprehensive analysis of the algorithm and Gauss-Newton based
implementation details are provided by Baker and Matthews in [BM04]. In addi-
tion to direct methods that minimize the photometric error and keypoint-based
methods that minimize the re-projection error, a semi-direct method has also been
proposed by Forster et al. [FPS14] and is called SVO. SVO maintains sparse fea-
tures and tracks the camera by reducing the photometric error of patches around
the features. Subsequently, bundle-adjustment is used to refine the tracking.

As with keypoint-based methods, a keyframe-decision is made after tracking a
frame successfully. DTAM uses the number of projected pixels as a threshold.
When this falls below a certain value, a keyframe is created because future tracking
might become unstable otherwise. The more recent LSD-SLAM system presented
by Engels et al. [ESC14] bases the threshold on a weighted combination of relative
distance and angle to the currently selected keyframe. Once a new keyframe is
created by a direct method, either a dense or semi-dense depth-map is generated.
LSD-SLAM, for instance, employs the stereo-matching earlier presented by Engels
et al. [ESC13] for this task. The depth value d in subsequent tracking activities is
then read from the newly created depth-map. Each keyframe initializes its depth
map based on the projected depth map of the tracking process and expands the
depth map using epipolar line searches and triangulation.

5.5 Initialization

Section 5.3 already described that an essential matrix estimation based on the
8-point algorithm yields a camera motion estimate. Given a motion estimate, it is
also possible to triangulate points, and hence, to initialize keypoint-based visual
SLAM methods. This way, the chicken-and-egg problem due to a tracking task
depending on mapping and a mapping task depending on tracking is overcome.

4This way the formulation is more general and fits nicely to Equation 5.1. It is equivalent to
the one of Forster et al. [FPS14].

64 CHAPTER 5. MONOCULAR SLAM

There are degeneracies associated with the 8-point algorithm, however, as ex-
plained by Hartley and Zissermann [HZ04, p.295-297]. Most importantly, applying
the algorithm to points on a plane will lead to multiple solutions and causes it to
fail. A homography estimation on the other hand, which also allows the recon-
struction of camera motion, is only suitable for a planar scene structure. For this
reason, Mur-Artal et al. [MAMT15] evaluate the fundamental matrix F as well
as the homography H in parallel during initialization. A heuristic based on sym-
metric transfer errors is then used to decide which model is appropriate. While F
can easily be replaced using the essential matrix to gain camera model indepen-
dence, as in Section 4.1, it is more difficult to replace the homography estimation.
Zhang et al. [ZLZH10] proposed a solution for the para-catadioptric case that can
be adapted to catadioptric cameras with hyperbolic and elliptical mirrors, but a
camera model independent solution demands further research.

First direct methods [NLD11, ESC13] were bootstrapped by keypoint-based meth-
ods: As soon as the keypoint-based method identifies frames with enough paral-
lax, (semi-)dense stereo matching is performed to generate an initial map. When
this procedure succeeds, the system continues to run self-supported, omitting key-
points. LSD-SLAM managed to fully exclude keypoints by starting with a random
depth map and assuming a large variance in (inverse) depth. The system subse-
quently converges to a valid depth map, given enough translation.

Chapter 6

Semi-Dense 3D Reconstruction

Robots that are supposed to interact with the environment require a representa-
tion of their surroundings, such as the map of a visual SLAM method. Clearly, a
representation as accurate as possible is desired in order to infer useful informa-
tion. Keypoint-based visual SLAM could barely be used for collision detection for
example, because an object nearby could lack associated image features. For this
reason, a dense or semi-dense 3D reconstruction of the environment is preferable.
Repeating point triangulation for as many points as possible would result in a
low quality 3D scene reconstruction, due to the presence of noise and outliers. A
natural way to cope with these issues is to treat reconstruction as a probabilistic
process. Broadhurst et al. [BDC01] employed a Bayesian probability framework
for reconstruction, which is based on space carving [KS00]. Ultimately, space carv-
ing reconstructs surfaces by analyzing the photo-consistency of voxels projected to
image spaces. During this process, occlusion has to be modeled explicitly. A more
recent method that models occlusion implicitly as a source of noise was presented
by Vogiatzis and Hernández [VH11]. The basic principle, which is also used in
other works [PNF+08, ESC13, PFS14, ESC14, MAT15], is the following: Each
pixel of the camera can be interpreted as a depth sensor, if the camera motion is
known and when a correspondence to a pixel of a previous image is given. In this
case, triangulation could be used to compute the depth. Here, a problem arises
from finding the dense correspondences, which is usually done by searching the
epipolar line. Another challenge is to account for noisy data and outliers. All of
the aforementioned methods rely on the fusion of multiple depth measurements in
order to calculate the posterior depth. Additionally, some of the methods perform
a smoothing step by introducing a regularization term. After correspondences
are found and depth observations are fused, the resulting (semi-)dense depth map
is equivalent to a local point cloud. The 3D points of this cloud emerge from
back-projecting an image coordinate to the according depth.

65

66 CHAPTER 6. SEMI-DENSE 3D RECONSTRUCTION

Zmin Zmax
−1

−0.5

0

0.5

1
m

at
ch

in
g

sc
or

e

(a) Matching scores along an epipolar line.

Zmin Zmax
0

10

20

30

40

50

60

(b) Histogram of local maxima.

Figure 6.1: The plot in (a) represents the score of pixels during the epipolar line search
and black dots highlight local maxima. In (b), local maxima of 60 images are accumulated
into a histogram. Courtesy of George Vogiatzis, Aston University and Carlos Hernández,
Google Inc. Published in [VH11] as Figure 2.

6.1 Depth Uncertainty

By interpreting the camera as a depth sensor, the following question arises: Which
uncertainty is associated with each of the depth measurements?
Depending on the baseline between two camera poses, the search interval on the
epipolar line might exhibit several matches to the projected pixel. This means
that the epipolar search is a source of uncertainty. Given the baseline, the length
of the epipolar line is determined by a depth range of interest. This depth range is
either obtained by a SLAM algorithm or by prior knowledge of the scene. Hence,
sampling possible depth values of a back-projected pixel resembles an epipolar
search in other image frames.
At this stage, camera poses are usually assumed to be fixed and are not included
in probability estimation [VH11, PFS14, MAT15]. Figure 6.1a depicts the score of
potential correspondences along the epipolar line. Vogiatzis and Hernández [VH11]
accumulated local maxima for the same pixel over 60 neighboring frames into a
histogram and observed that it has a peak at the true depth, which is bounded by
mostly uniform noise. Such a histogram is shown in Figure 6.1b. To account for
this structure, Vogiatzis and Hernández represented the uncertainty by a Gaussian
+ Uniform mixture model:

p(z| z∗, π) = γN (z| z∗, σ2) + (1− γ)U(z| zmin, zmax) (6.1)

The values zmin and zmax cover the scene depth, σ2 describes the variance of a good
measurement and γ the probability of an inlier observation. While the normal

6.1. DEPTH UNCERTAINTY 67

distribution N is scaled by γ, the uniform distribution U is scaled by (1 − γ).
This way, the probability density function p(z| z∗, γ) has a peak at the true depth
z∗, where the significance is based on the parameter γ. To solve Equation 6.1 for
the true depth z∗, Vogiatzis and Hernández first used a Bayesian approach, which
required maintaining a histogram for each epipolar line of a pixel that is observed
in other frames. Because of the computational complexity of the Bayesian method,
an approximation of the posterior using a Gaussian × Beta model was presented as
well. This choice was motivated by the small Kullback–Leibler divergence between
the actual and the Gaussian × Beta distribution. Please refer to the work of
Vogiatzis and Hernández for more details on the probability estimation. Pizzoli et
al. [PFS14] presented a method, which is called REMODE (regularized monocular
depth estimation), built on the results of Vogiatzis and Hernández. The key
improvements of REMODE are the application of regularization and inverse depth
parametrization.

Modern methods do not parametrize geometry by depth values directly, but use
an inverse depth parametrization instead. This concept was presented by Civera
et al. [CDM08] and offers two main advantages. First, uncertainties behave more
Gaussian when using the inverse depth parametrization, which is important for
probabilistic reconstruction, especially depth hypothesis fusion. Second, employing
inverse depths reduces a bias during regularization: Due to projection, surfaces
nearby are sampled by more pixels than distant surfaces of the same size. Hence,
non-inverse depth gradients are differently scaled in fore- and background. The
inverse parametrization, on the other hand, behaves linearly to a certain degree
and helps to surpass this problem.

While Equation 6.1 assigns a probability density function to the sampled depth-
range, it is also possible to assign similarity errors, i.e. matching costs between the
back-projected pixel and pixels on the according epipolar lines. A comparison of
15 available cost functions was presented by Hirschmüller and Scharstein [HS09].

Engel et al. [ESC13] as well as Mur-Artal and Tardós [MAT15] effectively calculate
errors based on grayscale and gradient images. Mur-Artal and Tardós, for instance,
define the similarity error e(u) of a pixel at coordinate u on an epipolar line1 as

e(u) =
r2
I

σ2
I

+
r2
G

σ2
G

, (6.2)

which is to be understood as the summation of a normalized intensity residual
rI = I−I(u) and gradient residual rG = G−G(u), where I, I(u) are the intensities
and G,G(u) the gradient magnitudes, respectively.

1Here, u is a one-dimensional parameter of the epipolar line, because the actual 2D-coordinate
u has only one degree of freedom.

68 CHAPTER 6. SEMI-DENSE 3D RECONSTRUCTION

In addition to having a low similarity error, matching candidates must fulfill the
following conditions:

1. The gradient must be high (G(u) > λG), which reduces the ambiguity of
matches.

2. The orientation of the gradient Θ(u) must not be (nearly) perpendicular to
the epipolar line (|Θ(u) � Θl| < λΘl). This way, the ambiguity is further
reduced2, as described in-detail in [ESC13].

3. The orientation Θ(u) has to match a prediction based on the median rotation
of matched ORB features. (|Θ(u)�Θp| < λΘp)

Here, only the first two conditions are enforceable for every single-view camera
model, since the last condition assumes evenly distributed rotations. As a result
of using the Scharr operator for gradient computation, Mur-Artal and Tardós relate
the intensity noise to the gradient noise by σ2

G = θσ2
I , where θ = 0.23. This yields

the similarity error

e(u) = (r2
I +

1

θ
r2
G)

1

σ2
I

. (6.3)

By sampling the epipolar line, the pixel coordinate u0 with lowest similarity error is
chosen to represent the correspondence in the currently evaluated reference frame.
The coordinate u0 can further be refined to sub-pixel precision by constraining the
derivative of the error to be a local extremum:

∂e(u)

∂u
= 0 = 2(r

′

IrI +
1

θ
r
′

GrG)
1

σ2
I

(6.4)

0 = − 2

σ2
I

(I
′
rI +

1

θ
G
′
rG)

Where r′I(u) = −I ′(u) = 1
2
(I(u + 1) − I(u − 1)) and r′G(u) = −G′(u) = 1

2
(G(u +

1)−G(u− 1)).

2Otherwise, edges of the image could (nearly) coincide with the epipolar line, and lead to a
succession of matching candidates. As a result, a high uncertainty would be associated with each
candidate.

6.1. DEPTH UNCERTAINTY 69

This can be solved for u∗ by applying a first order Taylor approximation of the
residuals rI and rG at position the u0:

0 = − 2

σ2
I

(
I
′
(u0)rI(u0) +

1

θ
G
′
(u0)rG(u0)

)
(6.5)

≈ − 2

σ2
I

(
I
′
(u0)rI(u0 +4u) +

1

θ
G
′
(u0)rG(u0 +4u)

)
= − 2

σ2
I

(
I
′
(u0)rI(u0)−4uI ′2(u0) +

1

θ
G
′
(u0)rG(u0)− 1

θ
4uG′2(u0)

)
⇒4u(I

′2(u0) +
1

θ
G
′2(u0)) = I

′
(u0)rI(u0) +

1

θ
G
′
(u0)rG(u0)

4u =
I
′
(u0)rI(u0) + 1

θ
G
′
(u0)rG(u0)

I ′2(u0) + 1
θ
G′2(u0)

Then, the refined position is given through u∗ = u0 +4u and corresponds to an
inverse depth value ρ∗ at the back-projected pixel. Note that the choice of the
predefined parameter σ2

I does not affect the mininima of e(u) and in consequence
neither u0 nor u∗. Mur-Artal and Tardós propagate the uncertainty σ2

I to depth
uncertainties, which offer useful information at the stage of depth hypothesis fu-
sion. Employing non-linear uncertainty propagation [Ku66], the variance in u∗,
denoted by σ2

u∗ , is approximated by:

σ2
u∗ ≈

∣∣∣∣ ∂u∗

∂rI(u0)

∣∣∣∣2σ2
I +

∣∣∣∣ ∂u∗

∂rG(u0)

∣∣∣∣2θσ2
I (6.6)

=
r
′2
I (u0)(

r
′2
I (u0) + 1

θ
r
′2
G(u0)

)2σ
2
I +

1
θ2
r
′2
G(u0)(

r
′2
I (u0) + 1

θ
r
′2
G(u0)

)2 θσ
2
I

=
2σ2

I

r
′2
I (u0) + 1

θ
r
′2
G(u0)

=
2σ2

I

I ′2(u0) + 1
θ
G′2(u0)

Let %(u) be a mapping from a location on the epipolar line to inverse depth. Then
starting from the inverse depth ρ = %(u∗), the standard deviation σρ is inferred
from two inverse depth deviations. These deviations are based on inverse depths
related to two more points on the epipolar line, which are located at u∗ + σu∗ and
u∗ − σu∗ :

σρ = max(|%(u∗ + σu∗)− ρ|, |%(u∗ − σu∗)− ρ|) (6.7)

So far, the inverse depth ρ and standard deviation σρ of a pixel is estimated by
sampling the epipolar line of one reference keyframe. To increase the precision

70 CHAPTER 6. SEMI-DENSE 3D RECONSTRUCTION

of the measurement, multiples of such depth hypothesis from different frames are
fused. Because it is likely that some hypothesis are outliers due to mismatching,
a compatible subset of the measurements has to be selected. The χ2 test offers a
method to test the compatibility of hypothesis. Testing each hypothesis with the
remaining ones will result in a maximal subset of compatible hypothesis. Only if
the size of the subset is larger than a threshold λn, a fused inverse depth hypothesis
ρf is obtained in the following manner:

ρf =

∑
1
σ2
ρi

ρi∑
1
σ2
ρ

, σ2
f =

1∑
1
σ2
ρ

(6.8)

Although the fusion of several measurements reduces the noise, the output inverse
depth map still suffers from spurious discontinuities. The removal of such noisy
discontinuities, while preserving edges, is thoroughly studied in image processing
and called image smoothing. Several image smoothing techniques and their mathe-
matical relations are studied by Mrázek et al. in [MWB06]. Methods based on total
variation regularization [PFS14] or inspired by bilateral filtering [ESC13, MAT15]
were successfully applied to improve the quality of inverse depth maps. Engel et
al. [ESC13] compute the weighted average of the surrounding of each inverse depth
value to efficiently regularize the depth map. The weight is based on the variance
σ2
f of the inverse depth values, and values that differ more than 2σf are neglected

in order to preserve edges. At this stage, it is also possible to include intensity
variations in the weighting, since discontinuities in color tend to correspond to
discontinuities in depth.

Chapter 7

Loop-Closing

Section 2.3.6 motivated the use of global data in SLAM systems. Even if modern
direct and keypoint-based visual SLAM methods operate with high precision, a
drift due to accumulated errors is inevitable on large-scale data. A key concept
to address this problem is called loop-closing. It refers to the problem of rec-
ognizing a previously visited location (loop-closing detection) in order to acquire
a globally consistent map and trajectory (loop-closing correction). Williams et
al. [WCN+09] differentiate between three categories of methods performing the
first task of loop-closing detection: Map-to-map, image-to-image and image-to-
map methods. Algorithms of the first category divide the map into sub-maps and
a loop is detected when sub-maps exhibit similar salient features of some kind.
In contrast to map-to-map techniques, image-to-image techniques operate directly
on camera frames. They compare images using a visual vocabulary, for instance
based on SURF features, and identify a loop based on this comparison. The latter
category of image-to-map techniques includes algorithms that search the map for
features observed in the current frame. Again, when the search is successful, a
loop is detected.

Even though Williams et al. emphasized image-to-map methods in their work
of 2009, as they potentially use more information due to the availability of 3D
map-points, it seems that the focus in recent years is on image-to-image meth-
ods. Cummins and Newman presented a seminal work on image-to-image meth-
ods [CN07] that was later extended and dubbed fast appearance-based mapping
(FAB-MAP) [CN08]. The success of FAB-MAP derives from three qualities. First,
it scales well – namely, linearly to the number of processed images. Second, it ad-
dresses perceptual aliasing effectively. Perceptual aliasing describes that distinct
locations may visually appear coincident to the system. Third, FAB-MAP gen-
erates a probability density function over locations, which means that not only

71

72 CHAPTER 7. LOOP-CLOSING

the most compatible frames are identified, but also that the probability of a loop-
detection is determined. An open-source implementation of FAB-MAP, called
OpenFABMAP, is presented by Glover et al. [GMW+12]. While the loop-closing
detection of LSD-SLAM is based on this implementation, the loop-closing de-
tection technique of ORB-SLAM, presented by Mur-Artal and Tardós [MAT14],
operates in a comparable manner. Like FAB-MAP, the method also uses a bag-of-
words [GLT12] representation of frames: Feature descriptors are grouped to visual
words by discretization, and hence, an images holds a bag-of-words as it contains
a multiset of descriptors. FAB-MAP, as well as the method of Mur-Artal and
Tardós, requires a pre-calculated visual vocabulary.

As soon as a loop is detected, loop-closing correction has to be triggered. Consid-
ering that the ends of the loop potentially have greatly erroneous relative poses,
the “true” relative transformation has to be estimated. Since loop-closing is usually
performed among keyframes using image-to-image detection methods, both ends
of the loop exhibit 3D data. Accordingly, keypoint-based methods estimate the
relative camera transformation between the two involved keyframes based on 3D
point correspondences, which can be found by feature matching. A closed-form
algorithm for this task is presented by Horn [HHN88]. Alternatively1, the esti-
mate is assessable using a subset of three 3D points with the method of Arun et
al. [AHB87] in a RANSAC-scheme, as outlined by Strasdat [Str12a, p.129]. The
resulting relative transformation estimate can further be refined using subsequent
bundle-adjustment. Engel et al. [ESC14] discovered that the tracking component
of their direct method is able to compute the relative transformation, when an
aggressive coarse-to-fine approach (starting at resolution 20x15) is chosen. Engel
et al. also expound that at the occasion of loop-closure, direct methods could still
rely on keypoints in order to execute Horn’s technique for transformation estima-
tion. Given the “true” relative transformation, the accumulated error is split over
all keyframes in the loop using pose graph optimization, as in [OLT06]. In order to
affect scale drifts effectively at this stage, transformations are usually represented
in the Lie group Sim(3).

1According to [AHB87], the methods of Horn and Arun et al. were developed independently
at the same time.

Chapter 8

Implementation

Previous chapters outlined crucial principles and presented state-of-the-art monoc-
ular visual SLAM methods. This chapter revisits introduced topics and expands
on their interaction with focus on the development of a real-time monocular vi-
sual SLAM system. In contrast to most existing systems, the newly implemented
application – dubbed CAM-SLAM, which stands for camera agnostic monocular
SLAM – is not restricted to pinhole cameras, but explicitly allows omnidirectional
and other central camera models. In fact, flexibility is one of the main character-
istics of the application and has been a major reason for developing a monocular
visual SLAM system from scratch. CAM-SLAM is keypoint-based and the archi-
tecture of the system is based on the following design choices:

1. Cameras-agnostic. First and foremost, the support for omnidirectional
camera models is required, as this is the focus of this work. As a consequence,
it has been investigated whether it is possible to support a wider range of
camera models. The collection of algorithms utilized in the implementation
successfully enables various camera models, as long as they allow feature
tracking and exhibit a single effective viewpoint.

2. Various features. Since history indicates that new salient image feature de-
tectors and descriptors emerge every few years, a system that is independent
of the actual detector and descriptor implementation is preferable.

3. Multi-threaded. Modern SLAM methods exploit the multi-tasking capa-
bilities of today’s processors. As latencies can be reduced this way, the new
system has to benefit from parallel computing techniques.

4. Portable. Finally, the application should be easily portable. Therefore,
the system avoids depending on the robot operating system ROS [QCG+09].

73

74 CHAPTER 8. IMPLEMENTATION

Instead, an optional ROS node is being developed in order to include CAM-
SLAM in ROS stacks.

At the very beginning of the development, CAM-SLAM was supposed to become a
direct method, like LSD-SLAM. Experiments showed, however, that direct meth-
ods depend on an accurately calibrated camera model, which is not available for
the VSN V.360◦ camera. This dependency results from the vast amount of epipo-
lar line searches at each keyframe, due to the extension of the depth map. If
a badly calibrated camera disturbs this process, epipolar line searches produce
mismatches and corrupt depth maps. This issue is less prominent in keypoint-
based methods, as correspondences are found by feature matching. Even though
an epipolar check might be used to verify good matches, this step is optional for
keypoint methods. Further, as explained in Section 8.3.3, sampling the epipolar
line might be considerably more expensive for omnidirectional cameras, depending
on the actual model. This again favors keypoint-based methods, when the camera
is not represented by the pinhole model. Another decisive factor, prompting the
shift to a keypoint-based method, has been the release of ORB-SLAM. As noted in
Chapter 5, ORB-SLAM is today’s reference keypoint-based visual SLAM system
and is the most accurate system available.

While the next section continues to describe CAM-SLAM on a broad level, imple-
mentation details follow in Section 8.3.

8.1 System overview

CAM-SLAM is divided into four packages: The core package cam-slam, the viewer
package cam-slam-viewer, the testing package cam-slam-tests and the ROS node
package cam-slam-ros, which is still in development and not part of this thesis.
The former packages are described in the following.

8.1.1 Package: cam-slam

Mandatory dependencies: Eigen3 [GJ+10], g2o [GKSK11], OpenCV [Bra00],
Sophus [Str12b], Boost (Multi-index Contain-
ers [Mun04]), C++14

Optional dependencies: OpenSeqSLAM [Sue13], OpenML [DM98], ORB-
Extractor [MA15] of ORB-SLAM, CamOd-
oCal [HLP13]

The cam-slam core component abstracts all methods from the user and provides an

8.1. SYSTEM OVERVIEW 75

Figure 8.1: Frame processing flowchart. While the Tracker, Slam System and Mapper
lane each map to one thread in the application, the Dense Reconstructor lane maps to at
least one thread. New frames arrive in the system thread and are subsequently processed
by the tracking, mapping and semi-dense reconstruction thread, according to the system
state.

easy-to-use interface. While the other packages are optional and intended for test
purposes, the core package is the only required package to execute CAM-SLAM.
Inspired by PTAM and ORB-SLAM, it internally creates separate tracking and
mapping threads. An additional system thread is created, which handles commu-
nication with the user thread and performs some computations in order to unload
the tracking thread. Being able to semi-densely reconstruct the environment,
CAM-SLAM starts at least one more reconstruction thread. When compiled with
OpenMP support, which is optional, this number can be increased arbitrarily. One
more loop-closing thread is created if enabled1. Figure 8.1 illustrates the data flow
of a single image frame.

By design, the system thread provides the only interface to the user, and hence,
reacts to newly available frames. In contrast to ORB-SLAM, where new frames
are grabbed by the tracking thread, image features are computed directly by the

1Even though CAM-SLAM is designed to support loop-closing and offers an implementation,
it is not yet robust enough to be presented here. For this reason, subsequent experiments are
performed without loop-closing.

76 CHAPTER 8. IMPLEMENTATION

system thread, outside of the tracking component. Additionally, a simple feature
tracker is implemented in the system thread, which is used for map initialization
and map point creation. In the original design of CAM-SLAM, the only purpose of
the system thread was to present an interface using the observer pattern. Such an
interface should not be implemented in one of the other time-critical components,
because listener notifications are immediately executed in the current thread. Yet,
experiments have shown that the system thread is mostly idle when handling events
only. As a consequence, further operations were transferred to the system thread
with the acceptable drawback that the user should not perform heavy operations
in callbacks.

After salient image features were created and assuming that the map is already
initialized, the tracking thread takes over the frame. Tracking involves bundle-
adjustment of the locally visible map, which is accessible by maintaining a covis-
ibility graph. In the case that tracking was successful, the mapping thread may
further process the frame by converting it to a keyframe, if required by the system.
Here, the decision of the system is based on the conditions proposed by Mur-Artal
et al. [MAMT15] that are discussed in Section 5.3. During mapping, new map
points are generated and bad ones are removed. Optionally, the system performs
a semi-dense reconstruction of the environment, either online or offline – the latter
to increase accuracy.

Also, the above-mentioned data-flow appears to be sequential, all threads are able
to execute computations simultaneously. More precisely, while the system is cal-
culating features of a very new frame, the tracking and mapping threads could still
be engaged in bundle-adjustment, each on a different (key-)frame.

Listing 8.1 exemplifies the interface of CAM-SLAM. A complete list of all interface
methods, as well as a class-diagram of CAM-SLAM, is available in the appendix
as Listing B.1 and Figure A.5, respectively.

8.1. SYSTEM OVERVIEW 77

SlamSystem slamSystem ;
s lamSystem . s e tup (s t d : : make_shared<ORBHandler >()) ;
s lamSystem . se tDefau l tCameraMode l (

s t d : : make_shared<EquiAngularCamera >(1920 , 320)
) ;
s lamSystem . addNewKeyf rameLis tener ([] (Key f ramePo in te rCons t f)

{ s td : : cout << "Got key f rame : " << f−>id ; }
) ;
s lamSystem . addNewFrameListener ([] (FramePo inte rConst f)

{ s td : : cout << "Got t r a c k ed frame ! " ; }
) ;
s lamSystem . s t a r t () ;
wh i l e (hasFrame ()) s lamSystem . c reateFrame (get Image ()) ;

Listing 8.1: Illustrative usage of CAM-SLAM. After the SlamSystem object is instan-
tiated, a feature handler has to be selected. Using polymorphism, arbitrary feature
handlers can be defined outside the core package. Similarly, the default camera model
is selected. In theory, CAM-SLAM supports altering camera models – this aspect is
untested though and feature tracking would become problematic. The remaining code
subscribes to two events, starts the SLAM system and feeds it with images.

8.1.2 Package: cam-slam-tests

Mandatory dependencies: cam-slam, gtest [Inc15]
Optional dependencies: —

The objective of the cam-slam-tests package is twofold: On the one hand, unit
tests are provided for stability; on the other hand, it is responsible for han-
dling datasets. Supported datasets have either the TUM-RGBD [SEE+12], KIT-
TI [GLU12], Catadioptric RGB-D [SSG14] or a CAM-SLAM specific format. The
motivation behind the latter one derives from the ability to recognize synthetic
data. For instance, ground truth poses with synthetic image features – subject to
a manually defined degree of noise – can be exported from the computer graphics
software Blender [Fou15]. Also supported are raw image and video sequences.
This package creates one more thread for each loaded dataset in order to perform
asynchronous buffering.

8.1.3 Package: cam-slam-viewer

Mandatory dependencies: cam-slam, cam-slam-tests, Qt [Com15], Boost
Optional dependencies: qcustomplot [Eic15], graphViz [EGK+01], qgv [Nic14]

An interactive graphical user interface for CAM-SLAM is provided in the cam-

78 CHAPTER 8. IMPLEMENTATION

slam-viewer package. In addition to the ability to display map points, image
features, frames, and keyframes and the covisibility graph; the Qt-based viewer
allows to adjust parameters, load datasets, and monitor workload. Further, it
includes helpful test- and debug-visualizations, such as the following:

1. Every map point is clickable in the 3D view. After double-clicking a point, all
observing keyframes, along with the according image sections, are displayed.

2. Vice versa, image features of the most recent keyframes are clickable, pro-
ducing the same effect as above.

3. During semi-dense 3D reconstruction, each depth-hypothesis is exemplified
by a 3D-line of length 2σρ and the error function arising from epipolar line
sampling (between two manually selected keyframes) is redirected to gnuplot
instantaneously. This becomes clearer in the discussion of Section 8.3.3.

Screenshots of the cam-slam-viewer component running CAM-SLAM are available
in Appendix A.6 and A.7.

8.2 Data Structures

During run-time, CAM-SLAM occupies most of its time with data. Be it feature
matching or bundle-adjustment, data has to be associated and optimized. The
most significant data relates to map points, frames and keyframes, and the corre-
sponding data structures are presented next. A graphical overview of map-related
structures is provided by Figure A.4. Data arising from implementation concepts,
such as mutexes, are omitted.

8.2.1 Map and Map Point

Map points store position, normal and color vectors ∈ R3, where the normal is
the average viewing direction of observing keyframes. While the map contains a
potentially large number of N points, a map point refers toK observing keyframes.
Map points additionally exhibit a reliability count that realizes the following idea
of ORB-SLAM: A map point must be observed in at least 25% of the frames,
where it was predicted to be visible – otherwise it gets deleted. The reliability
count of CAM-SLAM behaves more locally, however: After being initialized with
the lower bound value Λl = 0, the count is increased or decreased, according to
the observation result, but may not exceed the upper bound Λu = 8. Should the
variable count fall below Λl, the map point is removed. This way, map points
associated to non-static objects get removed quickly.

8.2. DATA STRUCTURES 79

8.2.2 Frame

After receiving a new camera image, CAM-SLAM first assigns a frame object and
a camera model to the image. The frame contains the similarity transformation ξ
that can – ad libitum – be interpreted as camera pose or camera-to-world transfor-
mation. To allow matching, keypoints and descriptors are attached to the frame,
in which the keypoints are divided in a grid structure to speed up matching. At
this point, the camera model of the frame has to be considered, as discussed for
the cylindrical camera model in Section 8.4. As soon as matches are available,
they are also associated with the frame.

8.2.3 Keyframe

Each keyframe stores the reference to the frame it is based on. Additionally, and in
contrast to other investigated implementations, it references covisible keyframes
using a multi-index data structure. Here, the multi-index container combines
two red-black trees in order to allow fast sorting based on the covisibility count
and fast access based on the referenced keyframe. While the insertion and lookup
complexity of this structure is O(log n), operations on the iterator are performed in
constant time. Hence, accessing the N best covisible keyframes has the complexity
O(N).

Furthermore, observed map points and an optionally computed inverse depth map
are associated with a keyframe.

8.2.4 Camera Model

Since CAM-SLAM supports a wide range of camera models, it requires a uni-
form interface of shared characteristics. This interface is presented in Listing 8.2.
There are only two functions that do not exhibit a default implementation, namely
camToPixel and pixelToRay. While the first one maps from 3D camera coordinates
to 2D image coordinates, the latter one performs the reversed mapping – with
undefined depth, however. The function getDistance computes the offset between
two image space coordinates, which can differ from a simple subtraction. For in-
stance, the cylindrical, as well as the equiangular camera model, has to consider
the reiterative nature of coordinates (umin � umax = 1). testErrorNormalChi2 checks
the plausibility of two image coordinates representing the same point, given the
variance of the camera model, using a χ2 test. The remaining function eraseArea
allows to mask areas of the image, as illustrated in Figure A.3.

80 CHAPTER 8. IMPLEMENTATION

v i r t u a l Vec2 camToPixel (con s t Vec3& d i r) con s t = 0 ;
v i r t u a l Vec3 p ixe lToRay (con s t Vec2& coord) con s t = 0 ;
v i r t u a l Vec2 g e tD i s t a n c e (con s t Vec2& coord1 ,

con s t Vec2& coord2) con s t ;
v i r t u a l boo l t e s tE r r o rNo rma lCh i 2 (con s t Vec2& coord1 ,

con s t Vec2& coord2) con s t ;
v i r t u a l v o i d e r a s eA r ea (con s t Mask& mask) ;

Listing 8.2: Common interface for CAM-SLAM camera models. Every central camera
model which implements this C++ interface is supported by CAM-SLAM.

8.2.5 Feature Handler

In the same way as with the camera model, the salient image feature detection,
extraction and comparison are abstracted using an interface, as shown in List-
ing 8.3. The interface should be self-explanatory: While createKeypoints performs
the steps of detection and extraction, getDistance measures the matching-quality of
two descriptors. CAM-SLAM implements this interface for SURF features and
ORB features using OpenCV and also supports the ORB detection and extraction
methods provided by ORB-SLAM.
v i r t u a l v o i d c r e a t eKe ypo i n t s (Frame∗ f rame) ;
v i r t u a l S c a l a r g e tD i s t a n c e (con s t cv : : Mat& desc1 ,

con s t cv : : Mat& desc2) con s t ;

Listing 8.3: Common interface for CAM-SLAM feature handling. When feature detec-
tion and extraction algorithms are provided, the implementation of this interface usually
only takes a few lines of code.

8.3 Algorithms

CAM-SLAM is strongly inspired by ORB-SLAM and in consequence shares com-
monalities with the works of Klein and Murray [KM09] as well as Strasdat et
al. [SDMK11]. The novelty of CAM-SLAM is that various camera models are
supported and for this reason the applicability of algorithms had to be considered
carefully during development. As the overall scheme of keypoint-based monocular
SLAM methods is introduced in Chapter 5, this section focuses on peculiarities of
CAM-SLAM.

8.3.1 Mapping

A central role of the mapping thread is to generate new map points. Section 4.2
discussed available triangulation methods, whereat some of them, like the pop-

8.3. ALGORITHMS 81

ular linear triangulation, are restricted to the pinhole camera model. Methods
that allow arbitrary camera models include angular triangulation, midpoint tri-
angulation and direct triangulation. During experiments, direct triangulation was
rejected rather quickly, as it is more expensive than midpoint triangulation and did
not perform better. Tests revealed that CAM-SLAM is able to execute stably with
midpoint as well as angular triangulation. This result might be unexpected in the
light of Section 4.2, but it becomes clear when considering that the mapping thread
performs local bundle-adjustment whenever a new keyframe is created – including
the moment of map initialization. As long as a triangulated map point is not re-
jected as an outlier, which happens more frequently with midpoint triangulation,
its position will be optimized by the mapper. With respect to efficiency, midpoint
triangulation executes around 60× faster than angular triangulation. Roughly
3000 calls to the triangulation method are performed each second, depending on
the type of image features, the camera and the dataset. During experiments, this
resulted in an average computation time of 82.46ms

s
for angular and 1.36ms

s
for

midpoint triangulation2.

In order to gain robust triangulation, the following pre- and post-triangulation
(distinguished by J,I) checks are performed for each potential map point:

J The angle between the back-projection of both image coordinates has to be
larger than a threshold λα. This way, map points with a high depth un-
certainty are effectively rejected. An alternative approach is to parametrize
map points by their inverse depth, as discussed in [CDM08].

I Inspired by ORB-SLAM, the scale consistency is confirmed by verifying that
the ratio of distances to both camera centers corresponds to the feature
pyramid levels. For instance, when the features are on the same level, the
ratio has to be in a range close to 1.

I The projection of the newly created map point to both image spaces u1,2 has
to be valid.

I The error between the keypoint positions and u1,2 has to be lower than a
threshold λe which is based on the image-space covariance of the camera
model.

2The attentive reader might be surprised to face the “unit” ms
s . It is equivalent to state that

a thread is occupied for 82.46%� or 1.36%� of its time. In my opinion, however, the explicit
notation used above is more comprehensible, and also gives a better sense for the cost than an
absolute measurement which is in the order of microseconds: 28.62 µs vs 0.46 µs here.

82 CHAPTER 8. IMPLEMENTATION

Notice that in contrast to regular visual SLAM methods, a maximal re-projection
error is enforced instead of the epipolar constraint3. Enforcing the epipolar con-
straint has been avoided, as it would be dependent on a specific camera model and
possibly expensive to evaluate.
When CAM-SLAM is newly started or when it lost tracking, it tries to initialize
mapping. In the course of this, an essential matrix estimation is performed in a
RANSAC-fashion. Even if this approach is less usual than the fundamental matrix
estimation, it again offers the advantage of being camera model independent – as
long as it is central. The first step of map initialization is to select a reference
keyframe, usually based on the first input frame. Afterward, each new frame
is treated as a potential keyframe and keypoints are matched to the reference
keyframe, which is necessary to employ the 8-point algorithm. The matching
is based on a feature tracker that locally searches the best matching descriptor
in two immediately consecutive frames for each previously matched keypoint of
the older frame. This process is accelerated using the grid structure associated
with the camera model, and when a match succeeds it is back-propagated to the
reference keyframe. This can be understood as a survival of the fittest scheme,
as the number of keypoints available for back-tracing is monotonically decreasing.
When the number of matches falls below a threshold, a new reference keyframe is
selected.
Due to the local search, camera movements should not be too aggressive until
being initialized. It is common practice to pre-define a threshold for good features
in order to remove outliers. Since this reduces flexibility – thresholds are only
valid for one descriptor type and could also be scene dependent – CAM-SLAM
follows another strategy. It is assumed that keypoints that were successfully traced
back several frames tend to correspond to good matches and that after Λi = 4
consecutive frames without switching the reference keyframe, descriptor distances
are approximately normally distributed around a good threshold. Then, after
observing Λi consecutive frames, the threshold λf is learned based on a generous
χ2 test. As soon as the map is initialized, another χ2 test is performed to refine
the threshold. This scheme has been tested successfully with binary ORB and
real-valued SURF descriptors.
When the map is successfully initialized, the mapper performs local bundle-
adjustment to optimize map points and keyframe positions. The implementation is
based on the g2o graph optimization framework and adopts the double window ap-
proach presented in Section 5.3.1. As with ORB-SLAM, the optimization process
is performed twice: At a coarse scale first that is with few Levenberg-Marquardt
iterations, and at a finer scale after outliers are removed.

3One could argue that this is an implicit epipolar check, since the re-projected position is
located on the epipolar line.

8.3. ALGORITHMS 83

Map points are created whenever a new keyframe is created. This time, point
correspondences are found using FLANN [ML09], and if applicable, also using the
tracking method employed during initialization. Points are always triangulated
based on a match between keyframes.

8.3.2 Tracking

The tracking-component is responsible for locating the camera in space and has
to operate as fast as possible. Should a new image frame arrive before the last
one is processed, the new frame is skipped. Initially, the pose of a new frame is
estimated using a linear motion model that also incorporates skipped frames. A
more sophisticated guess would be possible, for instance with Kalman filtering,
but the linear model showed to be sufficient.
Given the initial estimate, feature matching is performed with the currently select-
ed keyframe by projecting available map points to the new frame. This is possible
because the keyframe has keypoints associated to map points and map points, as
well as the new frame, are already located in 3D space. The matching is again
accelerated using the grid structure, and an epipolar check is not performed. The
distance between the projected and the actual keypoint position has to fall below
a threshold, however, and the descriptor distance is tested using the threshold
learned during map initialization. If the number of successful matches is lower
than the threshold λm, the new frame is labeled as untrackable. In this case, the
system tries to create a new keyframe as fast as possible, because this could assist
future tracking. After receiving Λt untrackable frames in a row, tracking is set to
be lost. During experiments Λt = 1 was specified. Hence, tracking was lost at the
first untrackable frame.
In the case that enough matches are found, bundle-adjustment is performed to
refine the initial pose estimate. This process is again divided into two steps –
first, before outlier removal; and second, with outlier removal. In contrast to the
bundle-adjustment of the mapping-component, map point positions are unaltered
and fewer points are used.
Finally, as with ORB-SLAM, the tracker requests a new keyframe when less than
ΛvNfk map points associated to the keyframe were found in the frame, where Nfk

is the number of map points in the keyframe and 0 < Λv < 1, here Λv = 0.9. This
can be understood as a visual change condition.

8.3.3 3D Reconstruction

A comprehensive representation of the environment is crucial for mobile robots,
and Chapter 6 already introduced related concepts. CAM-SLAM implements the

84 CHAPTER 8. IMPLEMENTATION

(a) Target keyframe K (b) Reference keyframe K1 (c) Reference keyframe K8

Figure 8.2: Application of CAM-SLAM’s semi-dense reconstruction to the
rgbd_dataset_freiburg3_long_office_household dataset. The first image shows the tar-
get keyframe, and the pixel subject to inverse depth estimation is highlighted by a green
dot. The second and third image show the corresponding epipolar line. Red pixels on
this line are rejected as their cost is above a threshold and yellow pixels are rejected
due to one of the conditions presented in Section 6.1. A green circle marks the matches’
position.

procedure presented by Mur-Artal and Tardos in [MAT15] and again derives gen-
eralized algorithms in order to support a wide range of camera models.

The method is outlined as follows: Given a keyframe K that is subject to semi-
dense 3D reconstruction and a set of covisible keyframes K1..Kn, an inverse depth
value is computed for every applicable pixel of K by performing epipolar line
matches with K1..Kn. Every match results in a depth hypothesis, and hypotheses
are fused if enough are available. As all inverse depth computations are indepen-
dent, this process is executed in parallel with an arbitrary amount of threads using
OpenMP.

Because CAM-SLAM assumes a central camera model, epipolar line searches are
possible, but the parametrization of these lines is not predefined. Capturing hy-
perbolic or parabolic mirrors yields conical epipolar lines, while the cylindrical
model results in sinusoid and the pinhole model in straight lines.

CAM-SLAM offers complete independence of the specific type of epipolar lines
by employing a line simplification algorithm, and follows the same principle as
the Ramer–Douglas–Peucker [Ram72] algorithm. Given the target keyframe K
with the inverse depth range dmin < d < dmax, a reference keyframe Ki and a
pixel coordinate u of interest, the back-projection of u at depth dmin and dmax is
projected to the image space of Ki and referred to as v1,2. Here, the extremes
dmin and dmax are chosen as the 5%- and 95%-quantiles of the depth values of all
map points associated with K, which effectively narrows the search and removes
outliers. The direct line between v1 and v2 is then sub-sampled by projecting

8.3. ALGORITHMS 85

0.40.60.811.2

R
es
id
ua

ls
/
E
rr
or

Inverse depth in [1/m]

0.40.60.811.2

R
es
id
ua

ls
/
E
rr
or

Inverse depth in [1/m]

Figure 8.3: Error progression during epipolar line sampling. While the red bars in the
upper plot resemble the error of the reference keyframe shown in Figure 8.2b, the bars
in the bottom image resemble the one of Figure 8.2c. Further, blue lines account for
intensity residuals and turquoise ones for gradient residuals. Grayly marked areas are
rejected due to the gradient angle condition (condition 2 of Section 6.1). A version of the
upper plot using direct depth instead of inverse depth parametrization is in the appendix
as Figure A.1 for the interested reader. The plots demonstrate a well-known property of
inverse depth sampling: In the short-baseline case (upper figure) fewer minima exist and
the cost-function behaves smoother. For this reason, it is easier to find the optimum,
but since pixels correspond to a larger inverse depth range, the result is less precise.
For larger baselines, the precision will increase but the task of finding the correct match
becomes more serious.

86 CHAPTER 8. IMPLEMENTATION

(a) Visualization in Meshlab (b) Visualization in the cam-slam-viewer

Figure 8.4: Result of the semi-dense triangulation procedure of CAM-SLAM. At a
closer inspection it becomes apparent that some edges are reconstructed twice. Please
note, however, that this experiment has been performed without loop-closing. As a
result, each inaccuracy that emerged while executing monocular SLAM directly affects
the quality of the 3D reconstruction. Hence, the monocular SLAM procedure, as well as
the semi-dense 3D reconstruction procedure, can be considered to be of high quality.

intermediate 3D points of the declared depth range toKi. Sub-sampling is repeated
iteratively until subsequent line-segments are nearly straight or until the length
of segments falls below a threshold. The pseudo-code for this algorithm is shown
in Listing B.2. Please notice that this procedure involves little overhead when
used in conjunction with pinhole cameras, since the sub-sampling stops at the first
iteration.
CAM-SLAM samples the epipolar line segments using the Bresenham [Bre65] al-
gorithm and assigns a matching cost to each pixel, as in Equation 6.3. It also
performs the sub-pixel refinement and error propagation discussed in Section 6.1.
Figure 8.2 illustrates the epipolar line sampling for one target and two reference
keyframes. The error and residual values belonging to the sampling process in
these images are plotted in Figure 8.3. While conditions 1 and 2 of Section 6.1 are
enforced during sampling, condition 3 is not, as it makes assumptions about the
camera model.
After completing the semi-dense inverse depth-map, hole filling and regularization
are applied to improve the quality. These steps are realized comparably to the
LSD-SLAM implementation and are repeated ΛNR = 2 times. The hole-filling
step iterates over the inverse depth map and analyzes a window of size Λh = 3
around each pixel without depth value. When more than Λhn = 3 neighbors in the
window have an inverse depth value and have a similar intensity to the pixel of
interest, their merged value is assigned to the pixel, as in Equation 6.8. In contrast

8.4. VSN V.360◦ 87

Figure 8.5: The image on the left side shows the V.360◦ camera. Courtesy of VSN
Mobil, retrieved from [Mob15]. On the right hand side 40% of a picture taken with the
V.360◦ is depicted. The cropping is due to the extreme (6480× 1080) aspect ratio of the
image. The full picture is available in A.10.

to the hole-filling step, the regularization step considers a window (of size Λr = 5)
around each pixel that has a value assigned. LSD-SLAM then averages those
values in the window that are not further away than 2σf from the current one.
CAM-SLAM, on the other hand, performs a χ2 test at 95%, which is effectively
the same. The reason to prefer the χ2 here is that inverse variances of inverse
depth values are stored in the implementation. As a result, the χ2 – in contrast to
a direct σf test – can be performed without performing computational expensive
divisions. CAM-SLAM again incorporates image intensities and merges the inverse
depth values as during hole filling.

Inverse depth map regularization and hole filling are speeded up using the multi-
threading capabilities of OpenMP. A result of the triangulation procedure is shown
in Figure 8.4.

8.4 VSN V.360◦

Among other cameras, the V.360◦ of VSN Mobil was used during experiments. It
is a consumer class camera and is displayed in Figure 8.5. The initial idea was
to equip a mobile robot with this camera in order to gain omnidirectional vision4.
For this reason, the camera had to provide a static video stream via HDMI – a
functionality that was not provided by the up-to-date firmware at the beginning
of this thesis. To overcome this limitation, a new remote control software with
Python and C++ interface has been developed, using reverse engineering tech-
niques. The course of action is only briefly outlined here: The official application

4The camera supplies other sensor data that is useful for robots but of no interest here.

88 CHAPTER 8. IMPLEMENTATION

(a) Regular 6x4 grid (b) Reiterative 6x4 grid

Figure 8.6: Comparison of a regular grid and reiterative grid. While the extreme
columns have maximal distance (here ‖xmin−xmax‖=5) in the regular grid, their distance
is 1 in the reiterative grid, where the maximal horizontal distance amounts to w

2 = 3 and
horizontal distances in general are given by M x = min(‖x2−x1‖, w−‖x2−x1‖). In the
implementation of the reiterative grid, 50% of the first column belongs to the beginning
and the remaining 50% to the end of the underlying image.

communicates with the camera via wifi5, and therefore, a man-in-the-middle at-
tack [CH15] suggests itself. The major hurdle is that the manufacturer makes use
of certificate-pinning to secure the communication. This problem has been over-
come by decompiling the official application and injecting a fake certificate. Large
portions of the extracted protocol are included in the remote control software,
which is available on github [Rü15].

As already mentioned in Section 3.2.5, the V.360◦ exhibits a cylindrical camera
model. Because tracking, as well as mapping, requires a grid structure for feature
matching, the lateral cylinder surface must be divided in a reiterative grid to
preserve locality, as illustrated in Figure 8.6.

8.4.1 Calibration

The main purpose of camera calibration is to find the intrinsic parameters of the
applied camera model. Due to the popularity of traditional cameras, this process
is well studied for the pinhole camera model. The fact that various omnidirec-
tional camera models are available – Section 3.2.3 presents an established one – is
reflected in the calibration methods: They are specialized for the model at hand.
As with traditional cameras, automatic omnidirectional calibration methods were

5The camera also communicates via Bluetooth and turning the device on is only possible with
Bluetooth. The new open-source remote control supports turning the device on and then handles
all communication via wifi.

8.4. VSN V.360◦ 89

0 200 400 600 800 1000
-20
-15
-10
-5
0
5
10
15
20

Image y-coordinate

Figure 8.7: The ruler on the left side was aligned with the camera axis in order to
calculate the pixel per cm ratio at several stops. The average ratio resulted in 86 px

cm ,
while the ratio at the top yielded 79 px

cm and at the bottom 100 px
cm . This behavior has

been measured using distinct angles. It occurred in every direction, with varying intensity
though. A reason for this peculiarity could be that the manufacturer compensates for the
decreasing resolution towards the mirror’s center this way. The green plot on the right
represents the measured ratio-divergence from the average. It has been approximated by
an second order function, which is shown in blue and used to diminish this effect. The
red line at 0 would correspond to optimal measurements of a perfect cylindrical camera.

proposed, such as by Bazin et al. [BKDV08]. Adan Salazar-Garibay compiled
available methods for a survey in his PhD thesis [SG11]. Unfortunately, it is not
possible to access raw images of the V.360◦ and in consequence, available calibra-
tion software could not be used.

In order to acquire calibration parameters nonetheless, a two-stage approach was
chosen. As usual, grid points of calibration patterns were extracted and used to
formulate a cost-function based on extrinsic and intrinsic camera parameters by
comparing actual and predicted grid-point positions. Since the cylindrical camera
model is highly non-linear, the first step has been to identify a set of promising
local minima by an evolutionary computation system. This decision had practical
reasons as well: An adequate system had been developed previously and the for-
mulation of an appropriate fitness function is trivial. The second step has been to
refine the results numerically using a non-linear optimization algorithm, namely
the quasi-Newton BFGS [NN91] method6.

An additional calibration approach has been tested that could not improve the
calibration results, however: The camera was placed inside a metal tube with a
well-structured pattern of round holes in it. The center of each hole was detected
and compared to a projected position, as usual. The advantage of this method is
that only one image is required, and hence, that extrinsic parameters have to be

6This is definitely not the fastest method, nor the most elegant one, to perform camera
calibration. It rather resembles a general non-linear optimization approach.

90 CHAPTER 8. IMPLEMENTATION

(a) 180× 120 image detail (b) 555× 380 image detail

Figure 8.8: Illustration of image artifacts produced by the V.360◦. At difficult lighting
conditions, the camera tends to produce scratchy edges as in 8.8a. Additionally, edges
might suffer blurriness, as the redly marked ones in 8.8b, even though vicinal ones
appear sharp, as the greenly marked ones. Both effects are most probably related to
post-processing steps performed directly on the camera.

estimated only once. This is possible as the pattern of holes is spread over the
complete image space. Figure A.9 shows a camera image from within the tube
and with detected circles.

Please notice that camera calibration is a domain of its own and an in-depth
discourse is out of the scope of this thesis.

8.4.2 Artifacts

That VSN aims at the consumer market with the V.360◦ already became appar-
ent during calibration, which an image quality analysis reconfirms. Figure 8.8
highlights two distinct artifacts that are frequently observed, especially at difficult
lighting conditions.

It is likely that these artifacts are related to post-processing steps, as these are com-
monly performed on consumer devices such as mobile phones. These effects appear
with a recently cleaned camera, and an option to turn post-processing off is not pro-
vided. Further, and again depending on the lighting conditions, the video stream
suffers from considerable motion blur and an unpreventable auto-adjustment of
the frame-rate is performed. During experiments, the artifacts were addressed by
down-sampling the footage. Down-sampling removes the high-frequency portion
of the signal, and hence, reduces some of the effects discussed above. Here, the
insertion of new aliasing-artifacts has to be prevented, for example by applying
Lanczos interpolation or bilinear interpolation.

Chapter 9

Results

In order to evaluate the performance of CAM-SLAM in terms of accuracy, speed
and robustness, a variety of tests has been carried out. The usual approach for
such tests is to employ datasets with highly accurate ground-truth data and to
compare it to generated data. As flexibility is the major objective of CAM-SLAM,
experiments have been executed on diverse datasets and omnidirectional data has
explicitly been included. The used datasets are characterized as follows:

1. TUM-RGBD datasets[SEE+12]: Pinhole camera, handheld

2. KITTI datasets[GLU12]: Pinhole camera, mounted on moving car

3. Catadioptric RGB-D dataset[SSG14]: Catadioptric camera, mounted on
moving car

4. V360 dataset : Cylindrical camera, handheld

5. Room dataset : Equiangular camera, synthetic images and motion

6. Mars dataset : Equiangular camera, synthetic images and motion

While datasets 1-3 are publicly available, sets 4-6 were created within the scope
of this thesis. The setup for acquiring set 4 is shown in Figure 9.1. The V.360◦
was rigidly coupled with a marker and tracked using a slightly modified version
of Aruco 1.31 [GJMSMCMJ14]. Although this tracking is not extremely accurate,
it suffices to perform a qualitative evaluation of running CAM-SLAM with the

1Modifications were necessary to increase the tracking performance on a high-resolution cam-
era (GoPro HERO3). While approximately 70% of frames were tracked before the modification,
100% were tracked afterward.

91

92 CHAPTER 9. RESULTS

(a) Back view (b) Front view (c) Tarcked camera

Figure 9.1: Setup used to track the V.360◦. In order to create sequences with associated
ground-truth, the camera motion has been calculated using marker tracking.

Figure 9.2: Rendering of the synthetic room scene. This image is used for illustration
purposes only – one frame of the equiangular renderings that have been used during
experiments is provided in Appendix A.8.

9.1. ACCURACY 93

CAM-SLAM PTAM LSD-SLAM ORB-SLAM
fr1_xyz 2.60 1.15 9.00 0.90
fr2_desk 3.53 × 4.57 0.88
fr2_desk_person 2.29 × 31.73 0.63
fr3_long_office 16.83 × 38.53 3.45
synth_room 2.84 × × ×
v360 sequence1 16.21 × × ×
v360 sequence2 14.92 × × ×

Table 9.1: Comparison of root mean square absolute trajectory errors in cm, using
small-scale datasets. With the exception of CAM-SLAM measurements, the data is
provided by Mur-Artal et al. [MAMT15].

V.360◦, as discussed later. Datasets 5 and 6 were generated using the computer
graphics software Blender with an equiangular camera model. Synthetic datasets
have the advantage of providing perfect ground-truth trajectories, but introduce
appearance-related difficulties. For instance, while most real surfaces exhibit struc-
ture due to imperfections, synthetic ones can be completely smooth, and hence,
featureless.

9.1 Accuracy

Experiments are grouped in two categories: Small- and large-scale experiments.
A good measure of performance for the former category is the absolute trajectory
error (ATE), as described by Sturm et al. [SEE+12]. It is computed by determining
the absolute differences of camera positions, after aligning the ground-truth with
the SLAM-produced trajectory. Here, either a 6D- or 7D-alignment is performed,
for example, using the method of Horn [HHN88]. The absolute trajectory error is
less suited for large-scale data, however. Imagine a SLAM system always produced
the perfect trajectory, but failed in one curve so that every subsequent position
had a major offset to the ground truth. Compare this to the case in which a system
continuously produces errors, but luckily, did not misinterpret the rotation. In a
large-scale scenario, the second system might obtain an ATE which is 1000× less
than the system that made one mistake only. Hence, a comparison of relative pose
errors (RPE) that effectively measure the local drift is more meaningful on large-
scale data. As CAM-SLAM – just like other monocular SLAM-methods – suffers
from scale-drift, only segments of large-scale datasets are investigated. For a more
profound evaluation on large-scale data, loop-closing would be required, which has
not been performed during experiments.

94 CHAPTER 9. RESULTS

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x [m]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

y
[m

]

ground truth
estimated
difference

(a) Synthetic room dataset (5)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x [m]

4

3

2

1

0

1

2

y
[m

]

ground truth
estimated
difference

(b) fr2_desk, dataset (1)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x [m]

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y
[m

]

ground truth
estimated
difference

(c) fr2_desk_person, dataset (1)

4 3 2 1 0 1 2
x [m]

3

2

1

0

1

2

3

y
[m

]

ground truth
estimated
difference

(d) fr3_long_office, dataset (1)

Figure 9.3: Plots that highlight the differences between CAM-SLAM estimated trajec-
tories and ground-truth trajectories. While ground-truth trajectories are black, estimated
trajectories are blue and differences between associated positions are plotted red. Gaps
in the graphs correspond to missing associations, mainly because ground-truth data is
missing.

9.1. ACCURACY 95

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x [m]

0.6

0.4

0.2

0.0

0.2

0.4

y
[m

]

ground truth
estimated

(a) V.360◦ sequence1 (6)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x [m]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

y
[m

]

ground truth
estimated

(b) V.360◦ sequence2 (6)

Figure 9.4: Plots of two V.360◦ sequences, where the ground truth trajectories are black
and the estimated trajectories are blue. While SURF-features were used in 9.4a, ORB-
features were used in 9.4b. That the ground-truth trajectories are not highly accurate
becomes apparent when observing their discontinuities.

Table 9.1 compares the root mean squared ATE produced by CAM-SLAM to the
ones produced by PTAM, LSD-SLAM and ORB-SLAM. Sequences starting with
fr... belong to the popular TUM-RGBD benchmarking datasets. While the se-
quences fr1_xyz and fr2_desk present a static environment with a moving camera,
a person is interacting in sequence fr2_desk_person. Processing non-static envi-
ronments is difficult for visual SLAM systems, which is shown in PTAM failing to
handle the scene and LSD-SLAM producing large errors. In contrast, the reliabil-
ity count presented in Section 8.2.1 and the outlier removal of ORB-SLAM proved
to be effective. Figures 9.3b and 9.3c show related plottings of the ground-truth
and estimated trajectories as well as their differences. The scene fr3_long_office,
which also presents a moving camera in a static environment, is difficult because
the camera maneuvers close to an object (the bear), rotates and maneuvers back.
This can easily cause scale-drifts or even tear down tracking and is liable for CAM-
SLAM’s high error in this scene. The difficult part of sequence fr3_long_office is
outlined with an orange box in Figure 9.3d.
The results presented in Table 9.1 show that CAM-SLAM has a comparable per-
formance as state-of-the-art methods. It outperformed LSD-SLAM in all test-
sequences and it was robuster than PTAM. ORB-SLAM, on the other hand, con-
sistently produced better results than CAM-SLAM, which has several causes:

1. ORB-SLAM is more finely tuned with respect to the camera model and
keypoint descriptors.

96 CHAPTER 9. RESULTS

2. ORB-SLAM performs loop-closing, while CAM-SLAM did not in the exper-
iments.

3. ORB-SLAM tracks a local map. Up to now, CAM-SLAM uses the local map
for mapping only and performs tracking to a reference keyframe.

Nevertheless, CAM-SLAM benefits from its flexibility. Neither of the other meth-
ods is able to handle omnidirectional data, while CAM-SLAM performed as well
on the omnidirectional synthetic room sequence as on the other sequences. The
estimated trajectory is shown in Figure 9.3a: The camera firstly moved straight
from one corner of the room to another one, started rotating and moved to yet
another corner while rotating. CAM-SLAM worked well on this set and produced
errors of the same order as with the TUM pinhole-datasets.

Figure 9.4 presents the results generated with the V.360◦-sequences. Even though
the ground-truth is not highly accurate, it is obvious that CAM-SLAM was able
to reproduce the original trajectory. Absolute trajectory errors are included in Ta-
ble 9.1. Here, the values are similar to the one of sequence fr3_long_office. There
are three reasons for the relatively large error: First and foremost, the camera
calibration could not be performed perfectly, as the V.360◦-model is not complete-
ly in accordance with a cylindrical model. This effect is illustrated in Figure 8.7
and it has been reduced using a second order approximation. Additionally to the
inaccuracies of the camera model, the artifacts discussed in Section 8.4.2 further
encourage trajectory errors. The last reason for the relatively high error is that
the ground-truth itself is prone to imprecision. Considering these circumstances,
CAM-SLAM’s performance on the V.360◦-dataset can be regarded as being con-
vincing.

In addition to evaluating the accuracy of CAM-SLAM in small-scale sequences, the
applicability to large-scale sequences has been tested. Figure 9.5 presents the cor-
responding trajectories, which were generated using three different camera models.
A rendering of the synthetic Mars scene, which was used for the first sequence,
is available in Appendix A.2. The according ground-truth trajectory is evenly
approximated by CAM-SLAM, despite a modest drift. Due to the more complex
camera movement, a more serious drift occurred in the catadioptric dataset. That
the estimated trajectory suffers from a drift in scale becomes clear when observing
the pulling in and out of the dead-end road in Figure 9.5b. One has to consider,
however, that the catadioptric camera is not mounted centrally on the car and
that a certain offset is expected for this reason. Appendix A.3 shows two frames of
this dataset from two different cameras. The output of only one of these cameras
was used during experiments. The remaining plot shown in Figure 9.5c resembles
experiments with the KITTI dataset that uses a pinhole camera. In this dataset,

9.2. PERFORMANCE 97

200 150 100 50 0 50 100
x [m]

300

250

200

150

100

50

y
[m

]

ground truth
estimated

(a) Synthetic Mars dataset (6)

20 40 60 80 100 120 140
x [m]

400

420

440

460

480

500

520

y
[m

]

ground truth
estimated

(b) Catadioptric dataset (3)

100 0 100 200 300 400 500 600 700 800
x [m]

400

600

800

1000

1200

1400

1600

y
[m

]

ground truth
estimated

(c) KITTI dataset (2)

Figure 9.5: Plotting of large-scale trajectories.

ORB SURF
Extr. Tracking Mapping Extr. Tracking Mapping Dense

Desk 18.54 22.02 448.74 325.03 23.07 333.34 384.48
Room 26.43 21.31 352.47 266.30 29.57 266.97 14340
Cata 28.67 8.07 178.12 225.00 33.22 401.47 -
Mars 36.89 18.66 226.03 210.55 7.90 83.83 -

Table 9.2: Timings of several components of CAM-SLAM, while being executed with
different datasets. Each column denotes the recording of one component (feature extrac-
tion in combination with feature tracking, frame tracking, local mapping and semi-dense
reconstruction) and each row denotes another dataset (two small-scale sets: fr2_desk (1),
synthetic room (5) and two large-scale sets: catadioptric set (3) and Mars set (6)). While
feature extraction and frame tracking timings measure the time for one frame to be pro-
cessed, mapping and semi-dense reconstruction measurements apply to keyframes. All
measurements are are specified in milliseconds.

the most severe drift occurred, which might be related to the shorter visibility
of map points. Interestingly, SURF feature matching was more reliable as ORB
matching, given catadioptric images. This could be related to the higher degree
of distortion, which clearly affects keypoint descriptors, but an in-depth analysis
remains outstanding.

9.2 Performance

The performance of CAM-SLAM with respect to execution speed has been an-
alyzed by recording timings of essential components. In addition, poor-man-
profiling was performed to identify bottlenecks and to understand the overall per-
formance of the system. The results of this profiling step are visualized as a flaming

98 CHAPTER 9. RESULTS

graph in Figure 9.6, where they are also discussed. Table 9.2, on the other hand,
presents the time recordings. An input video-stream with 24− 30 frames per sec-
ond grants a visual SLAM system approximately 42− 33 ms to process the frame,
when frame drops ought to be prevented. CAM-SLAM fulfilled this constraint for
each dataset, when ORB keypoints were used. At this point, it became useful to
separate frame tracking and feature extraction, as outlined in Figure 8.1. Ulti-
mately, this is pipelining and allows to run CAM-SLAM at higher frame rates2. It
is surprising at first that frame tracking and local mapping are executed faster on
omnidirectional datasets than on the pinhole camera sequence. The reason for this
is that more keypoints were successfully matched with the pinhole camera using
ORB-features. As a consequence, more map points were triangulated and involved
optimization operations became more expensive. The tracking and mapping of the
Mars-dataset has been as fast with SURF-features for the same reason.

A strong contrast between ORB- and SURF-features is given by the respective
extraction time. It takes approximately 10× longer to extract SURF-features,
which has implications for their applicability: Sequences with aggressive or non-
continuous movements, such as sequences generated with a hand-held camera, are
more likely to fail with SURF-features. This is because the tracking thread pre-
dicts camera poses less frequently, and hence, produces larger deviations in the
predictions.

Another contrast becomes apparent when correlating semi-dense reconstruction
timings. This process takes significantly longer with omnidirectional imagery. The
increased processing time is caused by the line-simplification algorithm, which is
discussed in Section 8.3.3. It produces more depth samples when used with non-
linear camera models and thus is most efficient on the pinhole camera model.

While Table 9.2 showed that camera tracking can run in real-time, the local map-
ping procedure is only executed a few times per second. This is expected and
is comparable to the behavior of ORB-SLAM. Mur-Artal et al. [MAMT15] mea-
sured that ORB-SLAM requires approximately 31ms for feature extracting and
frame tracking, which is performed sequentially and approximately 460ms for lo-
cal mapping. It is unclear, however, which hardware has been used for those
measurements. Considering the time required for ORB-feature extraction (they
measured 11.42ms for the same method), it must have been about twice as fast.
Here, an Intel R© CoreTM i7-920 processor from 2008 has been used with 1066MHz
DDR3-RAM.

2Currently, keypoint extraction is performed in the system thread of CAM-SLAM, which
means that the execution of call-backs and feature extraction are bidding for the same resource.
Hence, call-backs are delayed when using SURF-features and expensive call-backs interfere with
the SLAM-system.

9.2. PERFORMANCE 99

vcr-slam-viewer

LM
G2O

E

FCb. Cb.Cb.
System Tracker

A

Create Keyframe
Mapper

M.

G2O

Figure 9.6: Flaming graph of CAM-SLAM. Flaming graphs are visualizations of poor-
man-profiling. Basically, the profiler takes snapshots of the program stack at a high
rate – here, several thousand times in total – and analyzes the frequency of function
calls. As computational expensive functions appear often in the stack, they are likely
to correspond to a high frequency. Poor-man-profiler are easy to use, entail little over-
head and provide useful stack-information. Here, the main components mapper, system
and tracker are highlighted in blue, green and purple respectively. Highlighted in light
blue, the mapper spends most of its time with keyframe creation, which encompasses
local bundle-adjustment (performed by g2o and highlighted in white). Due to technical
reasons, angular triangulation is shown on a separate stack on the left side, marked in
black. Midpoint triangulation would barely appear in the graph. Three of the lighter
green calls on the system stack correspond to call-backs, while the slightly more intense
greenly marked call represents feature extraction. The tracking thread also spends most
of its time executing g2o which then executes Levenberg-Marquardt optimization. A bit
further above on the tracker stack, highlighted in pink, there is the computation of the
reprojection error. Here, a pinhole camera has been used. The bar belonging to the re-
projection error would be bigger for more complex camera models. Using the information
of this graph, one can carefully consider which functions respond best to optimization.
Namely, functions that appear frequently, whereas laborious optimizations of functions
that are only represented narrowly here should be avoided. In this experiment, the sys-
tem and tracking threads nearly operate at full capacity, while the mapping thread is
fully loaded.

Chapter 10

Conclusion

This thesis presented principles of monocular SLAM techniques, elaborated on
state-of-the-art methods and introduced a new system called CAM-SLAM. While
CAM-SLAM showed a similar accuracy as state-of-the-art monocular SLAM meth-
ods, it provides considerably more flexibility at the same time.

Being research software though, CAM-SLAM can still be improved. First of all,
the initialization procedure assumes a non-planar environment. Given a pinhole
camera model, it is possible to compute a homography to initialize from a planar
environment, but this concept does not generalize to any central camera model.
Zhang et al. [ZLZH10] presented an equivalent approach for some catadioptric
camera models, but a more flexible method would be desired. Also, CAM-SLAM
lacks a re-localization algorithm, and loop-closing has to be implemented more
robustly. This would substantially improve the performance on large-scale datasets
and simplify the comparison with other methods.

Banissi and Golipour [BG14] recently proposed an algorithm for the efficient sam-
pling of conics. It is possible that this algorithm could reduce the execution time
of the semi-dense reconstruction method for catadioptric camera models.

Mur-Artal et al. [MAMT15] already realized that their method might profit from
representing points at infinity, as described by Civera et al. [CDM08]. The same
argumentation holds true for CAM-SLAM: Especially on sequences that exhibit
camera transformations with a rotational component only, an inverse depth rep-
resentation during tracking can stabilize the SLAM execution.

Another area for future research involves the creation of high-quality omnidirec-
tional datasets. Such datasets are available for traditional cameras and an equiva-
lent benchmarking set for omnidirectional camera models would ease the evaluation
process.

101

102 CHAPTER 10. CONCLUSION

To my knowledge, CAM-SLAM is the first system able to support any type of
central camera model. In addition to executing monocular SLAM, it is also able
to perform a semi-dense reconstruction of the environment. Successful experiments
have been performed using synthetic datasets as well as real datasets with a variety
of camera models. The sets included small-scale indoor scenes and large-scale
outdoor scenes.

In order to obtain CAM-SLAM’s flexibility, relevant techniques were analyzed thor-
oughly. Different triangulation methods were implemented and compared for in-
stance, to decide which ones are best suited for camera-agnostic monocular SLAM.
Furthermore, a camera model-agnostic initialization procedure was presented that
is also independent of the type of salient images features.

As a result, CAM-SLAM is able to operate with the V.360◦, which exhibits a
rather uncommon camera model and could not be calibrated with high accuracy.
CAM-SLAM is easy to use, avoids heavy weight dependencies and implementing
a new camera model can usually be done within minutes.

These characteristics are unique and the potential of CAM-SLAM is considerable.
With the help of CAM-SLAM, after being put into a new environment, a machine
can quickly recognize its new surroundings, imposing minimal requirements on the
camera model.

Appendix A

Additional Figures

1 1.5 2 2.5 3 3.5 4

R
es
id
ua

ls
/
E
rr
or

Depth in meters

Figure A.1: This figure shows the same epipolar sampling as Figure 8.3, but with a dif-
ferent x-axis scaling. While Figure 8.3 is parametrized by inverse depth, a parametriza-
tion by immediate depth values is illustrated here. By comparing the width of error
bars, the following relation becomes apparent: The smaller the depth value of a pixel,
the smaller is the depth range of the pixel. This effect is neglectable when the inverse
depth parametrization is used.

103

104 APPENDIX A. ADDITIONAL FIGURES

Figure A.2: Rendering of the synthetic Mars scene. As with the rendering shown in
Figure 9.2, this rendering is used for illustration purposes only and an actual equiangular
rendering would look like Figure A.8.

(a) Left camera (b) Right camera

Figure A.3: Two simultaneously acquired frames of the catadioptric dataset [SSG14]
(3) that was used during experiments. When omnidirectional cameras are used, it is
common that a considerable portion of the images is occluded by the robot – or car in
this case. Hence, an appropriate masking of the image frames is mandatory.

105

Vectors

Feature

Feature

Feature

Feature

Feature

Feature L

L

L

L

L

L

List

Observation

Observation

Observation

Observation

MultiIndex Container

Covisible

Covisible

Point Point Point Point Point Point Point Point

Keyframe Keyframe Keyframe

List

List

Figure A.4: Map data-structure of CAM-SLAM. The map contains a list of keyframes
and map points, which offers the ability to add or remove instances in constant time, or
O(1). Each keyframe also stores a lookup-table of the size of image features, in order
to quickly associate features to map points. Map points, on the other hand, reference
their observations, which in turn allows for quickly associating keyframes to map points.
The list of observations that is maintained by every keyframe allows to access map
points efficiently. Finally, the red-black trees of the multi-index container provide fast
dereferencing of covisible keyframes, as described in Section 8.2.3.

106 APPENDIX A. ADDITIONAL FIGURES

D
e
p

th
E
stim

a
to

r

A
ll a

b
o
u
t tria

n
g

u
la

tio
n
. A

lso
 p

e
rfo

rm
s

se
m

i-d
e
n
se

 re
co

n
stru

ctio
n
.

C
a
m

e
ra

 M
o
d

e
l

V
a
rio

u
s ca

m
e
ra

m
o
d

e
ls a

re

su
p

p
o
rte

d
.

T
h
e
y
 n

e
e
d

 to

im
p

le
m

e
n
t th

is
in

te
rfa

ce
.

M
a
tch

e
r

A
ll a

b
o
u
t m

a
tch

in
g

fe

a
tu

re
s.

M
a
p

K
n
o
w

s a
ll tria

n
g

u
la

te
d

 p
o
in

ts
a
n
d

 a
ll ke

y
fra

m
e
s.

M
a
p

Po
in

t

A
 tria

n
g

u
la

te
d

 fe
a
tu

re
 is

re
p

re
se

n
te

d
 a

s m
a
p

 p
o
in

t.

Fra
m

e

C
a
m

e
ra

 im
a
g

e
, P

lu
s p

o
se

e
stim

a
tio

n
, p

lu
s ke

y
p

o
in

ts

K
e
y
Fra

m
e

S
p

e
cia

l fra
m

e
s th

a
t a

re
 u

se
d

fo

r m
a
p

 u
p

d
a
te

s.

M
a
p

p
e
r

E
x
te

n
d

s th
e
 m

a
p

 b
y
 n

e
w

K
e
y
fra

m
e
s. Pe

rfo
rm

 d
e
n
se

m

a
p

p
in

g
 a

n
d

 lo
o
p

-clo
sin

g
.

M
a
th

Lo
g

g
in

g

O
p

tim
ize

r

M
a
in

ly
 b

u
n

d
le

-a
d

ju
stm

e
n
t.

A
b

stra
cts g

2
o
.

Tra
cke

r

Lo
ca

te
 n

e
w

 Fra
m

e
s a

s
fa

st a
s p

o
ssib

le
.

Lo
o
p

D
e
te

cto
r

D
e
te

cts lo
o
p

s

Fe
a
tu

re
H

a
n
d

le
r

A
ll a

b
o
u
t e

x
tra

ctin
g

a
n
d

 co
m

p
a
rin

g
 fe

a
tu

re
s.

O
R

B

O
rb

 fe
a
tu

re
s

S
U

R
F

S
U

R
F fe

a
tu

re
s.

S
LA

M
 S

y
ste

m

In
te

rfa
ce

 to
 C

A
M

-S
LA

M

D
e
cla

ra
tio

n
s

co
re

E
q

u
iA

n
g

u
la

r C
a
m

e
ra

S
y
n
th

e
tic b

le
n
d

e
r ca

m
e
ra

.

C
y
lin

d
rica

l C
a
m

e
ra

Fo
r v

3
6

0

Po
in

tO
b

se
rv

a
tio

n

C
o
n
n
e
ctio

n
 b

e
tw

e
e
n

 ke
y
fra

m
e
s

a
n
d

 M
a
p

Po
in

ts

C
a
llb

a
ck

B
u
ff

e
r

B
u
ff

e
r fo

r m
e
ssa

g
e
s.

U
se

s o
w

n
 th

re
a
d

.

P
in

h
o
le

 C
a
m

e
ra

Tra
d

itio
n
a
l p

in
h

o
le

ca
m

e
ra

 m
o
d

e
l

P
ro
fi
le

r

Pe
rfo

rm
a
n
ce

e
v
a
lu

a
tio

n
.

B
a
se

G
rid

B
a
se

-cla
ss fo

r g
rid

im
p

le
m

e
n
ta

tio
n
s.

R
e
ite

ra
tiv

e
G

rid

G
rid

 fo
r cy

lin
d

rica
l

ca
m

e
ra

 m
o
d

e
ls.

G
rid

D
e
fa

u
lt g

rid
.

G
n
u
p

lo
t

M
e
iR

iv
e
s C

a
m

e
ra

M
o
d

e
l b

y
 M

e
i a

n
d

 R
iv

e
s.

S
ca

ra
m

u
zza

 C
a
m

e
ra

M
o
d

e
l b

y
 S

ca
ra

m
u
zza

.

F
igu

re
A

.5:
Illustrative

class
diagram

of
C
A
M
-SLA

M
.
C
lasses

related
to

cam
era

m
odels

are
placed

on
the

left
hand

side,
and

continuing
to

the
m
iddle

are
m
apping-related

classes.
O
n
the

right
hand

side,one
can

find
fram

e,keyfram
e
and

m
atching

related
classes.

T
he

m
ost

dom
inant

parts
of

the
system

,
nam

ely
the

tracking,
m
apping

and
system

class,
are

placed
at

the
bottom

.
Static

or
globalstructures

are
aligned

to
the

bottom
-right.

107

F
ig

u
re

A
.6

:
M
ai
n
w
in
do

w
of

th
e
ca
m
-s
la
m
-v
ie
w
er
.
T
he

pr
ed

om
in
an

t
in
te
rf
ac
e
w
id
ge
t
is

th
e
3D

re
nd

er
er
,
w
hi
ch

sh
ow

s
4

ke
yf
ra
m
es

(3
in

gr
ey

an
d
th
e
se
le
ct
ed

on
e
in

re
d)
,
th
e
cu

rr
en
t
fr
am

e
in

bl
ue

an
d
a
se
t
of

m
ap

po
in
ts
.
N
ot
e
th
at

tw
o
of

th
e

ke
yf
ra
m
es

ar
e
cr
ea
te
d
in

qu
ic
k
su
cc
es
si
on

an
d
ne
ar
ly

co
in
ci
de

.
T
hi
s
be

ha
vi
or

al
lo
w
s
th
e
sp
aw

ni
ng

of
m
or
e
m
ap

po
in
ts

af
te
r

in
it
ia
liz

at
io
n.

A
dd

it
io
na

ly
,t
he

gr
ou

nd
-t
ru
th

ca
m
er
a
pa

th
is
hi
gh

lig
ht
ed

in
gr
ee
n
an

d
ke
yf
ra
m
es

ar
e
co
nn

ec
te
d
by

a
bl
ue

lin
e.

108 APPENDIX A. ADDITIONAL FIGURES

F
igu

re
A

.7:
Second

screen
of

the
cam

-slam
-view

er.
W

hile
system

output
is

show
n
on

the
right

side,
the

im
age

of
the

last
keyfram

e
and

current
fram

e
are

depicted
on

the
top

left
side.

T
he

black
border

around
the

im
ages

derives
from

distortion
correction.

O
n
the

bottom
-left

side,the
covisibility

graph
is

visualized.

109

F
ig

u
re

A
.8

:
Si
ng

le
fr
am

e
of

th
e
sy
nt
he

ti
c
om

ni
di
re
ct
io
na

lr
oo

m
da

ta
se
t
w
hi
ch

w
as

us
ed

du
ri
ng

ex
pe

ri
m
en
ts
.

F
ig

u
re

A
.9

:
P
ic
tu
re

sh
ot

w
it
h
th
e
V
.3
60
◦
fr
om

w
it
hi
n
a
m
et
al

tu
be

w
it
h
a
st
ru
ct
ur
ed

pa
tt
er
n
of

ro
un

d
ho

le
s.

D
et
ec
te
d

m
id
po

in
ts

w
er
e
co
m
pa

re
d
to

pr
oj
ec
te
d
3D

po
in
t
in

or
de

r
to

pe
rf
or
m

ca
m
er
a
ca
lib

ra
ti
on

.

F
ig

u
re

A
.1

0:
C
om

pl
et
e
pi
ct
ur
e
sh
ot

w
it
h
th
e
V
.3
60
◦
ca
m
er
a
at

a
re
so
lu
ti
on

of
64

80
×

10
80

.
O
n
a
cl
os
er

in
sp
ec
ti
on

,
it

is
po

ss
ib
le

to
ob

se
rv
e
ar
ti
fa
ct
s
re
su
lt
in
g
fr
om

po
st
-p
ro
ce
ss
in
g
st
ep

s
th
at

ar
e
pe

rf
or
m
ed

on
th
e
ca
m
er
a.

Appendix B

Additional Listings

t y p ed e f s t d : : f u n c t i o n <vo i d (Key f ramePo in te rCons t)> Key f r ameL i s t e n e r ;
t y p ed e f s t d : : f u n c t i o n <vo i d (FramePo inte rConst)> FrameL i s t ene r ;
t y p ed e f s t d : : f u n c t i o n <vo i d (MapPointerConst)> MapL i s tene r ;

// L i s t e n e r s
vo i d addNewKeyf rameLis tener (con s t Key f r ameL i s t e n e r& l i s t e n e r) ;
v o i d addDenseKey f rameL i s t ene r (con s t Key f r ameL i s t e n e r& l i s t e n e r) ;
v o i d addSe l e c t edKey f r ameChangedL i s t ene r (con s t Key f r ameL i s t e n e r&

l i s t e n e r) ;
v o i d addNewFrameListener (con s t F r ameL i s t ene r& l i s t e n e r) ;
v o i d addSe l ec t edMapFragmentL i s t ene r (con s t MapL i s tene r& l i s t e n e r) ;

/// Setup SlamSystem , u s i n g a s p e c i f i c f e a t u r e Hand le r
vo i d s e tup (shared_ptr<Featu reHand l e r> f e a t u r eHand l e r =

s td : : make_shared<ORBHandler >() ,
boo l enab leAutoDense = f a l s e ,
boo l l o opDe t e c t i o n = f a l s e) ;

/// Set d e f a u l t camera model
v o i d se tDefau l tCameraMode l (CameraModelPointer model) ;

/// S t a r t a l l sub−sy s tems (t h r e ad s) , wa i t f o r data
vo i d s t a r t () ;

/// Shutdown sub−sy s tems (t h r e ad s)
vo i d shutdown () ;

/// U su a l l y used f o r s y n t h e t i c d a t a s e t s .
/// A l l ows the u s e r to c r e a t e the frame f i r s t and then run as normal .
v o i d addFrame (FramePo inte r f rame) ;

111

112 APPENDIX B. ADDITIONAL LISTINGS

/// Add image , make frame / keyframe ,
/// u s i n g the d e f a u l t camera model , then c a l l addFrame
vo i d c reateFrame (cv : : Mat image) ;

/// Add image , make frame / keyframe , then c a l l addFrame
vo i d c reateFrame (cv : : Mat image , CameraModelPointer cameraModel) ;

/// I n t r s u c t the system to c r e a t e a semi−dense (i n v e r s e)
/// depth map f o r e i t h e r a l l o r the next KF
vo i d r e c on s t r u c tDen s e (boo l a l l=f a l s e) ;

/// Get l a s t t r a c k ed frame
FramePo inte rConst getLastFrameTracked () con s t ;

/// Get l a s t t r a c k ed frame
FramePo inte rConst getLas tFrameWithKeypo int s () con s t ;

/// Get l a s t added frame
FramePo inte rConst getLastFrame () con s t ;

/// Get s e l e c t e d key f rame
Key f ramePo in te rCons t ge tSe l e c t edKey f r ame () con s t ;

/// Return the map
MapPointerConst getMap () con s t ;

/// Count mapped key f rames
s i z e_t countKeyf rames () con s t ;

/// Count map p o i n t s
s i z e_t countMapPoints () con s t ;

/// I s the system s h u t t i n g down?
boo l i sShut t ingDown () con s t ;

/// I s t r a c k i n g good? Retu rns f a l s e when the l a s t f rame wasn ’ t
/// t r a c k ed p r op e r l y , even when the t r a c k i n g i s s t i l l a c t i v e .
boo l i sT rack ingGood () con s t ;

Listing B.1: Public interface of CAM-SLAM. The entire functionality of CAM-SLAM
is encapsulated by this easy to use interface.

113

do{
// s k i p when segment too sma l l
i f (cameraModel−>g e tD i s t a n c e (s t a r t , end) < tMinLength){

// con t i nu e wi th s t a c k
i f (s t a c k . empty ()) b reak ;
s t a r t = end ;
end = s t a ck . pop () ;
c on t i nu e ;

}

// sample i n v e r s e depth−range
Vec2 mid = s u b d i v i d e (s t a r t , end) ;
i f (! cameraModel−> i s V a l i d P i x e l (mid)) b reak ;

// check c o n d i t i o n
Vec2 sm = (mid−s t a r t) . no rma l i z ed () ;
Vec2 me = (end−mid) . no rma l i z ed () ;
i f (sm . dot (me) < tMinDot){

// Subd i v i d e f i r s t h a l f and add second one to s t a c k
s t a c k . push (end) ;
end = mid ;
c on t i nu e ;

}

// e p i p o l a r l i n e samp l ing
samp l eL ine (s t a r t , end) ;

// con t i nu e wi th s t a c k
i f (s t a c k . empty ()) b reak ;
s t a r t = end ;
end = s t a ck . pop () ;

} wh i l e (t r u e) ;

Listing B.2: C++-like pseudo-code for the line-simplification algorithm used in CAM-
SLAM. Whenever a segment is sub-sampled, the second half is stored on a stack, while
the first one is processed immediately.

List of Tables

4.1 Absolute error of triangulation methods 53

9.1 Comparison of root mean square absolute trajectory errors 93

9.2 Timings of several components of CAM-SLAM 97

115

List of Figures

1.1 Prototypical omnidirectional camera 13

2.1 Tangent plane illustration . 18

2.2 Quadratic and Huber cost-function 28

2.3 Visualization of accumulated errors 29

3.1 Pinhole camera model . 34

3.2 Catadioptric camera systems . 36

3.3 Catadioptric camera model . 38

3.4 Camera model of Geyer and Daniilidis 39

3.5 Virtual camera models . 41

4.1 Illustration of the epipolar constraint 44

4.2 Illustration of the epipolar constraint for a cylindrical camera model. 45

4.3 Illustration of the triangulation problem 48

4.4 Angular triangulation . 50

4.5 Illustration of the camera positions used in the triangulation examples 51

4.6 Contour plots of triangulation cost-functions 53

5.1 Comparison of a covisibility and essential graph. 57

5.2 Illustration of bundle-adjustment 61

6.1 Plot of pixel scores during an epipolar line search 66

8.1 Frame processing flowchart . 75

117

118 LIST OF FIGURES

8.2 Application of CAM-SLAM’s semi-dense reconstruction 84

8.3 Error progression during epipolar line sampling 85

8.4 Result of the semi-dense triangulation procedure of CAM-SLAM . . 86

8.5 V.360◦ camera . 87

8.6 Comparison of a regular grid and reiterative grid 88

8.7 V.360◦ distortion . 89

8.8 Illustration of image artifacts produced by the V.360◦ 90

9.1 Setup used to track the V.360◦ . 92

9.2 Rendering of the synthetic room scene 92

9.3 Differences between estimated and ground-truth trajectories 94

9.4 Plots of two V.360◦ sequences . 95

9.5 Plotting of large-scale trajectories 97

9.6 Flaming graph of CAM-SLAM . 99

A.1 Direct epipolar line sampling . 103

A.2 Rendering of the synthetic Mars scene 104

A.3 Two simultaneously acquired frames of a catadioptric dataset 104

A.4 Map data-structure of CAM-SLAM 105

A.5 Illustrative class diagram of CAM-SLAM 106

A.6 Main window of the cam-slam-viewer 107

A.7 Second screen of the cam-slam-viewer 108

A.8 Single frame of the synthetic omnidirectional room dataset 109

A.9 Picture shot with the V.360◦ from within a metal tube 109

A.10 Complete picture shot with the V.360◦ camera 109

Bibliography

[ABO01] Argyros, A.A. ; Bekris, K.E. ; Orphanoudakis, S.C.:
Robot homing based on corner tracking in a sequence of
panoramic images. In: Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Com-
puter Society Conference on Bd. 2, 2001. – ISSN 1063–6919, S.
II–3–II–10 vol.2

[AF07] Arican, Zafer ; Frossard, Pascal: Dense disparity estima-
tion from omnidirectional images. In: Advanced Video and Sig-
nal Based Surveillance, 2007. AVSS 2007. IEEE Conference on,
IEEE, 2007, 399–404

[AHB87] Arun, K.S. ; Huang, T.S. ; Blostein, S.D.: Least-Squares
Fitting of Two 3-D Point Sets. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on PAMI-9 (1987), Sept, Nr.
5, S. 698–700. http://dx.doi.org/10.1109/TPAMI.1987.
4767965. – DOI 10.1109/TPAMI.1987.4767965. – ISSN 0162–
8828

[ASSS10] Agarwal, Sameer ; Snavely, Noah ; Seitz, Steven M.
; Szeliski, Richard: Bundle adjustment in the large.
Version: 2010. http://link.springer.com/chapter/10.
1007/978-3-642-15552-9_3. In: Computer Vision–ECCV
2010. Springer, 2010, 29–42

[ATA13] Aliakbarpour, H. ; Tahri, O. ; Araujo, H.: Image-based
servoing of non-holonomic vehicles using non-central catadiop-
tric cameras. In: Robot Motion and Control (RoMoCo), 2013
9th Workshop on, 2013, S. 54–59

[BDC01] Broadhurst, Adrian ; Drummond, Tom W. ; Cipolla,
Roberto: A probabilistic framework for space carving. In: Com-

119

http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://link.springer.com/chapter/10.1007/978-3-642-15552-9_3
http://link.springer.com/chapter/10.1007/978-3-642-15552-9_3

120 BIBLIOGRAPHY

puter Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE In-
ternational Conference on Bd. 1, IEEE, 2001, 388–393

[BG14] Banissi, E. ; Golipour, M.K.: A New General Incremental
Algorithm for Conic Section. In: Computer Graphics, Imaging
and Visualization (CGIV), 2014 11th International Conference
on, 2014, S. 46–51

[BJr07] Byröd, Martin ; Josephson, Klas ; Åström, Kalle: Fast
Optimal Three View Triangulation. Version: 2007. http:
//dx.doi.org/10.1007/978-3-540-76390-1_54. In: Ya-
gi, Yasushi (Hrsg.) ; Kang, SingBing (Hrsg.) ; Kweon, InSo
(Hrsg.) ; Zha, Hongbin (Hrsg.): Computer Vision – ACCV 2007
Bd. 4844. Springer Berlin Heidelberg, 2007. – ISBN 978–3–540–
76389–5, 549-559

[BK01a] Benosman, R. ; Kang, S.B.: Panoramic Vision: Sen-
sors, Theory, and Applications. Springer, 2001 (Monographs in
Computer Science). https://books.google.de/books?id=
MoAvSTApdDoC. – ISBN 9780387951119

[BK01b] Bunschoten, Roland ; Kröse, Ben: Range estimation from
a pair of omnidirectional images. In: Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference
on Bd. 2, 2001. – ISSN 1050–4729, S. 1174–1179 vol.2

[BK03] Bunschoten, Roland ; Kröse, Ben: Robust scene reconstruc-
tion from an omnidirectional vision system. In: Robotics and
Automation, IEEE Transactions on 19 (2003), Apr, Nr. 2, S.
351–357. http://dx.doi.org/10.1109/TRA.2003.808850.
– DOI 10.1109/TRA.2003.808850. – ISSN 1042–296X

[BKDV08] Bazin, J.-C. ; Kweon, Inso ; Demonceaux, C. ; Vasseur,
P.: Automatic calibration of catadioptric cameras in urban envi-
ronment. In: Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, 2008, S. 3108–3114

[BM04] Baker, Simon ; Matthews, Iain: Lucas-kanade 20
years on: A unifying framework: Part 1. In: In-
ternational journal of computer vision 56 (2004), Nr. 3,
221–255. http://link.springer.com/article/10.1023/
B:VISI.0000011205.11775.fd

http://dx.doi.org/10.1007/978-3-540-76390-1_54
http://dx.doi.org/10.1007/978-3-540-76390-1_54
https://books.google.de/books?id=MoAvSTApdDoC
https://books.google.de/books?id=MoAvSTApdDoC
http://dx.doi.org/10.1109/TRA.2003.808850
http://link.springer.com/article/10.1023/B:VISI.0000011205.11775.fd
http://link.springer.com/article/10.1023/B:VISI.0000011205.11775.fd

BIBLIOGRAPHY 121

[BN98] Baker, Simon ; Nayar, Shree K.: A theory of catadioptric im-
age formation. In: Computer Vision, 1998. Sixth International
Conference on, IEEE, 1998, 35–42

[BN99] Baker, Simon ; Nayar, Shree K.: A theory of single-viewpoint
catadioptric image formation. In: International Journal of
Computer Vision 35 (1999), Nr. 2, 175–196. http://link.
springer.com/article/10.1023/A:1008128724364

[BPA03] Bunschoten, Roland ; Prof, Commissie ; Adriaans, P. W.:
Mapping and Localization from a Panoramic Vision Sensor, Uni-
versity of Amsterdam, Diss., 2003

[Bra00] Bradski, G.: The OpenCV Library. In: Dr. Dobb’s Journal of
Software Tools (2000)

[Bre65] Bresenham, J. E.: Algorithm for Computer Control of a
Digital Plotter. In: IBM Syst. J. 4 (1965), März, Nr. 1,
25–30. http://dx.doi.org/10.1147/sj.41.0025. – DOI
10.1147/sj.41.0025. – ISSN 0018–8670

[BSCN08] Burbridge, Chris ; Spacek, Libor ; Condell, Joan
; Nehmzow, Ulrich: Monocular Omnidirectional Vision
based Robot Localisation and Mapping. In: Proc. of the
TAROS (2008). http://www.researchgate.net/profile/
Chris_Burbridge/publication/228849878_Monocular_

Omnidirectional_Vision_based_Robot_Localisation_

and_Mapping/links/53ec9ebb0cf250c8947cd425.pdf

[BTVG06] Bay, Herbert ; Tuytelaars, Tinne ; Van Gool, Luc: Surf:
Speeded up robust features. Version: 2006. http://link.
springer.com/chapter/10.1007/11744023_32. In: Com-
puter vision–ECCV 2006. Springer, 2006, 404–417

[CDM08] Civera, J. ; Davison, A.J. ; Montiel, J.: Inverse
Depth Parametrization for Monocular SLAM. In: Robotics,
IEEE Transactions on 24 (2008), Oct, Nr. 5, S. 932–945.
http://dx.doi.org/10.1109/TRO.2008.2003276. – DOI
10.1109/TRO.2008.2003276. – ISSN 1552–3098

[CEC15] Caruso, D. ; Engel, J. ; Cremers, D.: Large-Scale Direct
SLAM for Omnidirectional Cameras. In: International Confer-
ence on Intelligent Robots and Systems (IROS), 2015

http://link.springer.com/article/10.1023/A:1008128724364
http://link.springer.com/article/10.1023/A:1008128724364
http://dx.doi.org/10.1147/sj.41.0025
http://www.researchgate.net/profile/Chris_Burbridge/publication/228849878_Monocular_Omnidirectional_Vision_based_Robot_Localisation_and_Mapping/links/53ec9ebb0cf250c8947cd425.pdf
http://www.researchgate.net/profile/Chris_Burbridge/publication/228849878_Monocular_Omnidirectional_Vision_based_Robot_Localisation_and_Mapping/links/53ec9ebb0cf250c8947cd425.pdf
http://www.researchgate.net/profile/Chris_Burbridge/publication/228849878_Monocular_Omnidirectional_Vision_based_Robot_Localisation_and_Mapping/links/53ec9ebb0cf250c8947cd425.pdf
http://www.researchgate.net/profile/Chris_Burbridge/publication/228849878_Monocular_Omnidirectional_Vision_based_Robot_Localisation_and_Mapping/links/53ec9ebb0cf250c8947cd425.pdf
http://link.springer.com/chapter/10.1007/11744023_32
http://link.springer.com/chapter/10.1007/11744023_32
http://dx.doi.org/10.1109/TRO.2008.2003276

122 BIBLIOGRAPHY

[CH15] Cortesi, Aldo ; Hils, Maximilian: mitmproxy - home. https:
//mitmproxy.org/, 2015. – [Online; accessed 07-September-
2015]

[CLSF10] Calonder, Michael ; Lepetit, Vincent ; Strecha, Christoph
; Fua, Pascal: Brief: Binary robust independent el-
ementary features. In: Computer Vision–ECCV 2010
(2010), 778–792. http://www.springerlink.com/index/
h8h1824827036042.pdf

[CN07] Cummins, Mark ; Newman, Paul: Probabilistic appearance
based navigation and loop closing. In: Robotics and automation,
2007 IEEE international conference on, IEEE, 2007, 2042–2048

[CN08] Cummins, M. ; Newman, P.: FAB-MAP: Probabilistic Local-
ization and Mapping in the Space of Appearance. In: The In-
ternational Journal of Robotics Research 27 (2008), Juni, Nr. 6,
647–665. http://dx.doi.org/10.1177/0278364908090961.
– DOI 10.1177/0278364908090961. – ISSN 0278–3649

[Com15] Company, The Q.: Qt - Home. http://www.qt.io/
developers/, 2015. – [Online; accessed 05-September-2015]

[Cor11] Corke, P.: Robotics, Vision and Control: Fundamental Al-
gorithms in MATLAB. Springer, 2011 (Springer Tracts in Ad-
vanced Robotics). https://books.google.com.au/books?
id=hdkytqtBcyQC. – ISBN 9783642201431

[CS99] Chahl, J. S. ; Srinivasan, M. V.: Panoramic range estimation
using a moving camera and a specially shaped reflective surface.
In: Proceedings of the Australian Conference on Robotics and
Automation, 1999, S. 246–251

[Dav03] Davison, Andrew J.: Real-time simultaneous localisation and
mapping with a single camera. In: Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, IEEE,
2003, 1403–1410

[DM98] Dagum, Leonardo ; Menon, Ramesh: OpenMP: an industry
standard API for shared-memory programming. In: Computa-
tional Science & Engineering, IEEE 5 (1998), Nr. 1, S. 46–55

[DRMS07] Davison, Andrew J. ; Reid, Ian D. ; Molton, Nicholas D.
; Stasse, Olivier: MonoSLAM: Real-Time Single Camera

https://mitmproxy.org/
https://mitmproxy.org/
http://www.springerlink.com/index/h8h1824827036042.pdf
http://www.springerlink.com/index/h8h1824827036042.pdf
http://dx.doi.org/10.1177/0278364908090961
http://www.qt.io/developers/
http://www.qt.io/developers/
https://books.google.com.au/books?id=hdkytqtBcyQC
https://books.google.com.au/books?id=hdkytqtBcyQC

BIBLIOGRAPHY 123

SLAM. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 29 (2007), Juni, Nr. 6, 1052–1067. http://
dx.doi.org/10.1109/TPAMI.2007.1049. – DOI 10.1109/T-
PAMI.2007.1049. – ISSN 0162–8828

[DS96] Dennis, J. E. Jr. ; Schnabel, Robert B.: Numerical Methods
for Unconstrained Optimization and Nonlinear Equations (Clas-
sics in Applied Mathematics, 16). Soc for Industrial & Applied
Math, 1996. – 155–159 S. – ISBN 0898713641

[ED06] Eade, Ethan ; Drummond, Tom: Scalable monocular SLAM.
In: Computer Vision and Pattern Recognition, 2006 IEEE Com-
puter Society Conference on Bd. 1, IEEE, 2006, 469–476

[EGK+01] Ellson, John ; Gansner, Emden ; Koutsofios, Lefteris ;
North, Stephen ; Woodhull, Gordon ; Description, Short ;
Technologies, Lucent: Graphviz — open source graph draw-
ing tools. In: Lecture Notes in Computer Science, Springer-
Verlag, 2001, S. 483–484

[Eic15] Eichhammer, Emanuel: Qt Plotting Widget QCustomPlot -
Introduction. http://www.qcustomplot.com/, 2015. – [On-
line; accessed 05-September-2015]

[ESC13] Engel, Jakob ; Sturm, Jurgen ; Cremers, Daniel: Semi-
Dense Visual Odometry for a Monocular Camera. In: Computer
Vision (ICCV), 2013 IEEE International Conference on, IEEE,
2013, 1449–1456

[ESC14] Engel, J. ; Schöps, T. ; Cremers, D.: LSD-SLAM: Large-
Scale Direct Monocular SLAM. In: European Conference on
Computer Vision (ECCV), 2014

[ESN06] Engels, Chris ; Stewénius, Henrik ; Nistér, David: Bundle
adjustment rules. In: In Photogrammetric Computer Vision,
2006

[FAH71] Fletcher, R. ; Authority, United Kingdom Atomic E. ;
H.M.S.O.: A Modified Marquardt Subroutine for Non-linear
Least Squares. Theoretical Physics Division, Atomic Energy Re-
search Establishment, 1971 (AERE report / R: AERE report).
https://books.google.de/books?id=YajHHAAACAAJ

http://dx.doi.org/10.1109/TPAMI.2007.1049
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://www.qcustomplot.com/
https://books.google.de/books?id=YajHHAAACAAJ

124 BIBLIOGRAPHY

[FB81] Fischler, Martin A. ; Bolles, Robert C.: Random sample
consensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. In: Communications
of the ACM 24 (1981), Nr. 6, 381–395. http://dl.acm.org/
citation.cfm?id=358692

[FBB+05] Fleck, S. ; Busch, F. ; Biber, P. ; Strasser, W. ; Andreas-
son, H.: Omnidirectional 3D Modeling on a Mobile Robot us-
ing Graph Cuts. In: Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference
on, 2005, S. 1748–1754

[Fou15] Foundation, Stichting B.: Home of the Blender project - Free
and Open 3D Creation Software. http://www.blender.org/,
2015. – [Online; accessed 06-September-2015]

[FP02] Forsyth, David A. ; Ponce, Jean: Computer Vision: A Mod-
ern Approach. Prentice Hall Professional Technical Reference,
2002. – ISBN 0130851981

[FPS14] Forster, C. ; Pizzoli, M. ; Scaramuzza, D.: SVO:
Fast semi-direct monocular visual odometry. In: Robotics and
Automation (ICRA), 2014 IEEE International Conference on,
2014, S. 15–22

[FSMB98] Franz, Matthias O. ; Schölkopf, Bernhard ; Mallot,
Hanspeter A. ; Bülthoff, Heinrich H.: Where did I take
that snapshot? Scene-based Homing by Image Matching. In:
Biological Cybernetics 79 (1998), S. 191–202

[FZ98] Fitzgibbon, A. W. ; Zisserman, A.: Automatic Camera Re-
covery for Closed or Open Image Sequences. In: European Con-
ference on Computer Vision, Springer-Verlag, 1998, S. 311–326

[Gal11] Gallier, Jean: Texts in Applied Mathematics. Bd. 38:
Geometric Methods and Applications . New York, NY :
Springer New York, 2011 http://link.springer.com/10.
1007/978-1-4419-9961-0. – ISBN 978–1–4419–9960–3, 978–
1–4419–9961–0

[GD99] Geyer, Christopher ; Daniilidis, Konstantinos: Catadioptric
camera calibration. In: Computer Vision, 1999. The Proceedings
of the Seventh IEEE International Conference on Bd. 1, IEEE,
1999, 398–404

http://dl.acm.org/citation.cfm?id=358692
http://dl.acm.org/citation.cfm?id=358692
http://www.blender.org/
http://link.springer.com/10.1007/978-1-4419-9961-0
http://link.springer.com/10.1007/978-1-4419-9961-0

BIBLIOGRAPHY 125

[GD00] Geyer, Christopher ; Daniilidis, Kostas: A unifying
theory for central panoramic systems and practical implica-
tions. Version: 2000. http://link.springer.com/chapter/
10.1007/3-540-45053-X_29. In: Computer Vision—ECCV
2000. Springer, 2000, 445–461

[GD01] Geyer, Christopher ; Daniilidis, Kostas: Catadioptric pro-
jective geometry. In: International Journal of Computer Vi-
sion 45 (2001), Nr. 3, 223–243. http://link.springer.com/
article/10.1023/A:1013610201135

[Geb03] Geb, Thomas: Real-time panospheric image dewarping and pre-
sentation for remote mobile robot control. In: Advanced Robotics
17 (2003), Nr. 4, 359-368. http://dx.doi.org/10.1163/
156855303765203047. – DOI 10.1163/156855303765203047

[GJ+10] Guennebaud, Gaël ; Jacob, Benoît u. a.: Eigen v3.
http://eigen.tuxfamily.org, 2010

[GJMSMCMJ14] Garrido-Jurado, S. ; Muñoz-Salinas, R. ; Madrid-
Cuevas, F.J. ; Marín-Jiménez, M.J.: Automat-
ic generation and detection of highly reliable fiducial
markers under occlusion. In: Pattern Recognition 47
(2014), Nr. 6, 2280 - 2292. http://dx.doi.org/http:
//dx.doi.org/10.1016/j.patcog.2014.01.005. – DOI
http://dx.doi.org/10.1016/j.patcog.2014.01.005. – ISSN 0031–
3203

[GKSK11] Grisetti, Giorgio ; Kümmerle, Rainer ; Strasdat, Hauke
; Konolige, Kurt: g2o: A general Framework for (Hy-
per) Graph Optimization / Technical report. Version: 2011.
http://openslam.informatik.uni-freiburg.de/data/
svn/g2o/trunk/doc/g2o.pdf. 2011. – Forschungsbericht

[GLT12] Gálvez-López, D. ; Tardos, J.D.: Bags of Binary Words for
Fast Place Recognition in Image Sequences. In: Robotics, IEEE
Transactions on 28 (2012), Oct, Nr. 5, S. 1188–1197. – ISSN
1552–3098

[GLU12] Geiger, Andreas ; Lenz, Philip ; Urtasun, Raquel: Are we
ready for Autonomous Driving? The KITTI Vision Benchmark
Suite. In: Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012

http://link.springer.com/chapter/10.1007/3-540-45053-X_29
http://link.springer.com/chapter/10.1007/3-540-45053-X_29
http://link.springer.com/article/10.1023/A:1013610201135
http://link.springer.com/article/10.1023/A:1013610201135
http://dx.doi.org/10.1163/156855303765203047
http://dx.doi.org/10.1163/156855303765203047
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://openslam.informatik.uni-freiburg.de/data/svn/g2o/trunk/doc/g2o.pdf
http://openslam.informatik.uni-freiburg.de/data/svn/g2o/trunk/doc/g2o.pdf

126 BIBLIOGRAPHY

[GMR13] Gamallo, C. ; Mucientes, Manuel ; Regueiro, Carlos V.:
A FastSLAM-based Algorithm for Omnidirectional Cameras. In:
Journal of Physical Agents 7 (2013), Nr. 1

[GMW+12] Glover, A. ; Maddern, W. ; Warren, M. ; Reid, S. ;
Milford, M. ; Wyeth, Gordon: OpenFABMAP: An open
source toolbox for appearance-based loop closure detection. In:
Robotics and Automation (ICRA), 2012 IEEE International
Conference on, 2012. – ISSN 1050–4729, S. 4730–4735

[GN98] Gluckman, Joshua ; Nayar, Shree K.: Ego-motion and om-
nidirectional cameras. In: Computer Vision, 1998. Sixth Inter-
national Conference on, IEEE, 1998, 999–1005

[GNT98] Gluckman, Joshua ; Nayar, Shree K. ; Thoresz, Keith J.:
Real-time omnidirectional and panoramic stereo. In: Proc. of
Image Understanding Workshop Bd. 1, Citeseer, 1998, 299–303

[GNTVG07] Goedemé, Toon ; Nuttin, Marnix ; Tuytelaars, Tinne ;
Van Gool, Luc: Omnidirectional vision based topological nav-
igation. In: International Journal of Computer Vision 74 (2007),
Nr. 3, 219–236. http://link.springer.com/article/10.
1007/s11263-006-0025-9

[GRMG11] Gutierrez, Daniel ; Rituerto, Alejandro ; Montiel, J.
M. M. ; Guerrero, José J.: Adapting a real-time monocular
visual slam from conventional to omnidirectional cameras. In:
Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on, IEEE, 2011, 343–350

[GS07] Geyer, Christopher ; Stewenius, Henrik: A nine-point al-
gorithm for estimating para-catadioptric fundamental matrices.
In: Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, IEEE, 2007, 1–8

[GS08] Gebken, Christian ; Sommer, Gerald: Stochastically optimal
epipole estimation in omnidirectional images with geometric al-
gebra. Version: 2008. http://link.springer.com/chapter/
10.1007/978-3-540-78157-8_7. In: Robot Vision. Springer,
2008, 85–97

[GTVG+05] Goedemé, Toon ; Tuytelaars, Tinne ; Van Gool, Luc ;
Vanacker, Gerolf ; Nuttin, Marnix: Feature based omni-
directional sparse visual path following. In: Intelligent Robots

http://link.springer.com/article/10.1007/s11263-006-0025-9
http://link.springer.com/article/10.1007/s11263-006-0025-9
http://link.springer.com/chapter/10.1007/978-3-540-78157-8_7
http://link.springer.com/chapter/10.1007/978-3-540-78157-8_7

BIBLIOGRAPHY 127

and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International
Conference on, IEEE, 2005, 1806–1811

[GYK+11] Goto, Shinichi ; Yamashita, Atsushi ; Kawanishi, Ryosuke
; Kaneko, Toru ; Asama, Hajime: 3D environment measure-
ment using binocular stereo and motion stereo by mobile robot
with omnidirectional stereo camera. In: Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International Conference
on, IEEE, 2011, 296–303

[Har87] Harris, C. G.: Determination of Ego-Motion from Matched
Points. In: In Third Alvey Vision Conference, Alvey Vision
Club, 1987, 26.1–26.4

[HB01] Hicks, R. A. ; Bajcsy, R.: Reflective Surfaces as computa-
tional sensors. In: Image and Vision Computing 19 (2001), S.
773–777

[Her08] Hertzberg, Christoph: A Framework for Sparse, Non-Linear
Least Squares Problems on Manifolds. 2008

[HFRJ14] Hess-Flores, Mauricio ; Recker, Shawn ; Joy, Kenneth I.:
Uncertainty, Baseline, and Noise Analysis for L1 Error-Based
Multi-View Triangulation. In: Pattern Recognition (ICPR),
2014 22nd International Conference on, IEEE, 2014, 4074–4079

[HGC92] Hartley, R. ; Gupta, R. ; Chang, T.: Stereo from uncali-
brated cameras. In: Proceedings 1992 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, IEEE
Comput. Soc. Press, 1992. – ISBN 0–8186–2855–3, 761–764

[HHN88] Horn, Berthold K. ; Hilden, Hugh M. ; Negahdaripour,
Shahriar: Closed-form solution of absolute orientation us-
ing orthonormal matrices. In: JOSA A 5 (1988), Nr. 7,
1127–1135. http://www.opticsinfobase.org/abstract.
cfm?uri=josaa-5-7-1127

[HKS08] Huang, F. ; Klette, R. ; Scheibe, K.: Panoramic Imaging:
Sensor-Line Cameras and Laser Range-Finders. Wiley, 2008
(The Wiley-IS&T Series in Imaging Science and Technology).
https://books.google.de/books?id=75xwJ_yiCc4C. – IS-
BN 9780470998274

http://www.opticsinfobase.org/abstract.cfm?uri=josaa-5-7-1127
http://www.opticsinfobase.org/abstract.cfm?uri=josaa-5-7-1127
https://books.google.de/books?id=75xwJ_yiCc4C

128 BIBLIOGRAPHY

[HLP13] Heng, Lionel ; Li, Bo ; Pollefeys, Marc: CamOdoCal: Au-
tomatic intrinsic and extrinsic calibration of a rig with multiple
generic cameras and odometry. In: IROS, IEEE, 2013, 1793-
1800

[HP87] Harris, C. G. ; Pike, J. M.: 3D Positional Integration from
Image Sequences. In: In Proc. Alvey Vision Conference, Cam-
bridge.England, Alvey Vision Club, 1987, 32.1–32.4

[HS97] Hartley, Richard I. ; Sturm, Peter: Triangulation. In: Com-
puter vision and image understanding 68 (1997), Nr. 2, S. 146–
157

[HS09] Hirschmüller, Heiko ; Scharstein, Daniel: Evaluation of
stereo matching costs on images with radiometric differences. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions
on 31 (2009), Nr. 9, 1582–1599. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=4620119

[HWFS11] Hertzberg, Christoph ; Wagner, René ; Frese, Udo ;
Schröder, Lutz: Integrating Generic Sensor Fusion Algo-
rithms with Sound State Representations through Encapsula-
tion of Manifolds. In: CoRR abs/1107.1119 (2011). http:
//arxiv.org/abs/1107.1119

[HZ04] Hartley, R. I. ; Zisserman, A.: Multiple View Geometry in
Computer Vision. Second. Cambridge University Press, ISBN:
0521540518, 2004

[Inc15] Inc., Google: googletest - Google C++ Testing Framework.
https://code.google.com/p/googletest/, 2015. – [Online;
accessed 05-September-2015]

[Ish98] Ishiguro, Hiroshi: Development of low-cost compact omnidi-
rectional vision sensors and their applications. In: Proc. Int.
Conf. Information systems, analysis and synthesis, 1998, 433–
439

[IYT92] Ishiguro, H. ; Yamamoto, M. ; Tsuji, S.: Omni-directional
stereo. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 14 (1992), Feb, Nr. 2, S. 257–262. http://
dx.doi.org/10.1109/34.121792. – DOI 10.1109/34.121792.
– ISSN 0162–8828

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4620119
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4620119
http://arxiv.org/abs/1107.1119
http://arxiv.org/abs/1107.1119
https://code.google.com/p/googletest/
http://dx.doi.org/10.1109/34.121792
http://dx.doi.org/10.1109/34.121792

BIBLIOGRAPHY 129

[JNS+10] Jeong, Yekeun ; Nister, D. ; Steedly, D. ; Szeliski, R. ;
Kweon, In-So: Pushing the envelope of modern methods for
bundle adjustment. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, 2010. – ISSN 1063–
6919, S. 1474–1481

[KJLS14] Kim, JeongWoon ; Jung, Yeondeuk ; Lee, Dasol ; Shim,
David H.: Outdoor autonomous landing on a moving platform
for quadrotors using an omnidirectional camera. In: Unmanned
Aircraft Systems (ICUAS), 2014 International Conference on,
IEEE, 2014, 1243–1252

[KM09] Klein, Georg ; Murray, David: Parallel Tracking and Map-
ping on a Camera Phone. In: Proceedings of the 2009 8th
IEEE International Symposium on Mixed and Augmented Re-
ality. Washington, DC, USA : IEEE Computer Society, 2009
(ISMAR ’09). – ISBN 978–1–4244–5390–0, 83–86

[KM13] Klein, Georg ; Murray, David: PTAM (Parallel Tracking and
Mapping) re-released under GPLv3. https://github.com/
Oxford-PTAM/PTAM-GPL, 2013. – [Online; accessed 07-August-
2015]

[KPB13] Kukelova, Z. ; Pajdla, T. ; Bujnak, M.: Fast and Stable
Algebraic Solution to L2 Three-View Triangulation. In: 3D
Vision - 3DV 2013, 2013 International Conference on, 2013, S.
326–333

[KS97] Kang, Sing B. ; Szeliski, Richard: 3-D scene data recovery
using omnidirectional multibaseline stereo. In: International
Journal of Computer Vision 25 (1997), Nr. 2, 167–183. http://
link.springer.com/article/10.1023/A:1007971901577

[KS00] Kutulakos, Kiriakos N. ; Seitz, Steven M.: A theory of
shape by space carving. In: International Journal of Computer
Vision 38 (2000), Nr. 3, 199–218. http://link.springer.
com/article/10.1023/A:1008191222954

[KSC13] Kerl, C. ; Sturm, J. ; Cremers, D.: Dense Visual SLAM
for RGB-D Cameras. In: Proc. of the Int. Conf. on Intelligent
Robot Systems (IROS), 2013

https://github.com/Oxford-PTAM/PTAM-GPL
https://github.com/Oxford-PTAM/PTAM-GPL
http://link.springer.com/article/10.1023/A:1007971901577
http://link.springer.com/article/10.1023/A:1007971901577
http://link.springer.com/article/10.1023/A:1008191222954
http://link.springer.com/article/10.1023/A:1008191222954

130 BIBLIOGRAPHY

[KSN08] Kanatani, Kenichi ; Sugaya, Yasuyuki ; Niitsuma, Hi-
rotaka: Triangulation from two views revisited: Hartley-
Sturm vs. optimal correction. In: In practice 4 (2008),
5. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.220.724&rep=rep1&type=pdf

[Ku66] Ku, H. H.: Notes on the use of propagation of error formulas. In:
Journal of Research of the National Bureau of Standards. Section
C: Engineering and Instrumentation 70C (1966), Oktober, Nr.
4, S. 263–273. – ISSN 0022–4316

[KYK11] Kawanishi, Ryosuke ; Yamashita, Atsushi ; Kaneko, Toru:
Three-Dimensional Environment Modeling Based on Structure
from Motion with Point and Line Features by Using Omni-
directional Camera. INTECH Open Access Publisher, 2011
http://cdn.intechweb.org/pdfs/24916.pdf

[KYKA12] Kawanishi, R. ; Yamashita, A. ; Kaneko, T. ; Asama, H.:
Line-based camera movement estimation by using parallel lines
in omnidirectional video. In: Robotics and Automation (ICRA),
2012 IEEE International Conference on, 2012. – ISSN 1050–
4729, S. 3573–3579

[Lab06] Labrosse, Frédéric: The visual compass: Performance and
limitations of an appearance-based method. In: Journal of Field
Robotics 23 (2006), Oktober, Nr. 10, 913–941. http://dx.doi.
org/10.1002/rob.20159. – DOI 10.1002/rob.20159. – ISSN
15564959, 15564967

[LAo05] Lourakis, Manolis I. ; Argyros, Antonis ; others: Is
Levenberg-Marquardt the most efficient optimization algorithm
for implementing bundle adjustment? In: Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on
Bd. 2, IEEE, 2005, 1526–1531

[Lev44] Levenberg, K.: A method for the solution of certain problems
in least squares. In: Quart. Applied Math. 2 (1944), S. 164–168

[LH06] Li, Hongdong ; Hartley, Richard: Five-point motion estima-
tion made easy. In: Pattern Recognition, 2006. ICPR 2006. 18th
International Conference on Bd. 1, IEEE, 2006, 630–633

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.724&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.724&rep=rep1&type=pdf
http://cdn.intechweb.org/pdfs/24916.pdf
http://dx.doi.org/10.1002/rob.20159
http://dx.doi.org/10.1002/rob.20159

BIBLIOGRAPHY 131

[LHS+07] Luo, Chuanjiang ; He, Lei ; Su, Liancheng ; Zhu, Feng ; Hao,
Yingming ; Shi, Zelin: Omnidirectional depth recovery based
on a novel stereo sensor. In: Image 2 (2007), Nr. u2, S. v2

[Lin10] Lindstrom, Peter: Triangulation made easy. In: Computer Vi-
sion and Pattern Recognition (CVPR), 2010 IEEE Conference
on, IEEE, 2010, 1554–1561

[LK81] Lucas, Bruce D. ; Kanade, Takeo: An Iterative Image Reg-
istration Technique with an Application to Stereo Vision. In:
Proceedings of the 7th International Joint Conference on Artifi-
cial Intelligence - Volume 2. San Francisco, CA, USA : Morgan
Kaufmann Publishers Inc., 1981 (IJCAI’81), 674–679

[LM97] Lu, F. ; Milios, E.: Globally Consistent Range Scan Alignment
for Environment Mapping. In: AUTONOMOUS ROBOTS 4
(1997), S. 333–349

[Lon81] Longuet: A computer algorithm for reconstructing a scene
from two projections. In: Nature 293 (1981), September, S.
133–135

[Low04] Lowe, David G.: Distinctive image features from scale-
invariant keypoints. In: International journal of computer vi-
sion 60 (2004), Nr. 2, 91–110. http://link.springer.com/
article/10.1023/B:VISI.0000029664.99615.94

[MA15] Mur-Artal, Raúl: ORBextractor.h. https://github.com/
raulmur/ORB_SLAM/blob/master/include/ORBextractor.
h, 2015. – [Online; accessed 05-September-2015]

[MAMT15] Mur-Artal, Raúl ; Montiel, J. M. M. ; Tardós, Juan D.:
ORB-SLAM: a Versatile and Accurate Monocular SLAM Sys-
tem. In: Submitted to IEEE Transaction on Robotics. arXiv
preprint arXiv:1502.00956 (2015)

[Mar63] Marquardt, Donald W.: An algorithm for least-squares esti-
mation of nonlinear parameters. In: SIAM Journal on Applied
Mathematics 11 (1963), Nr. 2, 431–441. http://dx.doi.org/
10.1137/0111030. – DOI 10.1137/0111030

[MAT14] Mur-Artal, R. ; Tardos, J.D.: Fast relocalisation and loop
closing in keyframe-based SLAM. In: Robotics and Automation

http://link.springer.com/article/10.1023/B:VISI.0000029664.99615.94
http://link.springer.com/article/10.1023/B:VISI.0000029664.99615.94
https://github.com/raulmur/ORB_SLAM/blob/master/include/ORBextractor.h
https://github.com/raulmur/ORB_SLAM/blob/master/include/ORBextractor.h
https://github.com/raulmur/ORB_SLAM/blob/master/include/ORBextractor.h
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030

132 BIBLIOGRAPHY

(ICRA), 2014 IEEE International Conference on, 2014, S. 846–
853

[MAT15] Mur-Artal, Raul ; Tardós, Juan D.: Probabilistic Semi-
Dense Mapping from Highly Accurate Feature-Based Monocular
SLAM. In: Robotics: Science and Systems, 2015

[MB95] McMillan, Leonard ; Bishop, Gary: Plenoptic modeling:
An image-based rendering system. In: Proceedings of the 22nd
annual conference on Computer graphics and interactive tech-
niques, ACM, 1995, 39–46

[MC11] Matas, J. ; Chum, O.: RANSAC in 2011 (30 years
after). http://www.imgfsr.com/CVPR2011/Tutorial6/
RANSAC_CVPR2011.pdf. Version: 2011. – Presentation about
RANSAC at CVPR 2011. [Accessed: 2015 07 16]

[MGS07] Murillo, Ana C. ; Guerrero, José J. ; Sagues, C.: Surf
features for efficient robot localization with omnidirectional im-
ages. In: Robotics and Automation, 2007 IEEE International
Conference on, IEEE, 2007, 3901–3907

[Mic04] Micušık, Branislav: Two-view geometry of omnidirection-
al cameras, Czech Technical University in Prague, Diss.,
2004. http://cmp.felk.cvut.cz/ftp/articles/micusik/
Micusik-thesis.pdf

[ML09] Muja, Marius ; Lowe, David G.: Fast Approximate Nearest
Neighbors with Automatic Algorithm Configuration. In: Inter-
national Conference on Computer Vision Theory and Applica-
tion VISSAPP’09), INSTICC Press, 2009, S. 331–340

[Mob15] Mobil, VSN: VSN Mobil Support. https://support.
vsnmobil.com/hc/en-us,https://p4.zdassets.com/
hc/theme_assets/544440/200026195/v360.gif, 2015. –
[Online; accessed 10-September-2015]

[MP03] Micusik, Branislav ; Pajdla, Tomas: Estimation of omnidi-
rectional camera model from epipolar geometry. In: Computer
Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on Bd. 1, IEEE, 2003, I–485

[MR07] Mei, Christopher ; Rives, Patrick: Single view point omnidi-
rectional camera calibration from planar grids. In: Robotics and

http://www.imgfsr.com/CVPR2011/Tutorial6/RANSAC_CVPR2011.pdf
http://www.imgfsr.com/CVPR2011/Tutorial6/RANSAC_CVPR2011.pdf
http://cmp.felk.cvut.cz/ftp/articles/micusik/Micusik-thesis.pdf
http://cmp.felk.cvut.cz/ftp/articles/micusik/Micusik-thesis.pdf
https://support.vsnmobil.com/hc/en-us, https://p4.zdassets.com/hc/theme_assets/544440/200026195/v360.gif
https://support.vsnmobil.com/hc/en-us, https://p4.zdassets.com/hc/theme_assets/544440/200026195/v360.gif
https://support.vsnmobil.com/hc/en-us, https://p4.zdassets.com/hc/theme_assets/544440/200026195/v360.gif

BIBLIOGRAPHY 133

Automation, 2007 IEEE International Conference on, IEEE,
2007, 3945–3950

[MSN10] Mei, Christopher ; Sibley, Gabe ; Newman, Paul: Clos-
ing loops without places. In: Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, IEEE,
2010, 3738–3744

[Mun04] Munoz, Joaquin M L.: The Boost Multi-Index Containers
Library. In: C/C++ Users Journal Vol. 22, Issue 9 (2004),
September, S. 6

[MWB06] Mrazek, P. ; Weickert, J. ; Bruhn, A.: On Ro-
bust Estimation and smoothing with Spatial and Tonal
Kernels. Version: 2006. http://dx.doi.org/10.1007/
1-4020-3858-8_18. In: Klette, Reinhard (Hrsg.) ; Koz-
era, Ryszard (Hrsg.) ; Noakes, Lyle (Hrsg.) ; Weickert,
Joachim (Hrsg.): Geometric Properties for Incomplete data
Bd. 31. Springer Netherlands, 2006. – DOI 10.1007/1–4020–
3858–8_18. – ISBN 978–1–4020–3857–0, 335-352

[Nay88] Nayar, Shree K.: Sphereo: Determining Depth using Two
Specular Spheres and a Single Camera. In: 1988 Cambridge
Symposium on Advances in Intelligent Robotics Systems, 1988

[Nay97] Nayar, S.K.: Catadioptric omnidirectional camera. In: Com-
puter Vision and Pattern Recognition, 1997. Proceedings., 1997
IEEE Computer Society Conference on, 1997. – ISSN 1063–6919,
S. 482–488

[Nic14] Nicolas, Bergont: Interactive Qt graphViz display. https:
//github.com/nbergont/qgv, 2014. – [Online; accessed 05-
September-2015]

[NLD11] Newcombe, Richard A. ; Lovegrove, Steven J. ; Davison,
Andrew J.: DTAM: Dense tracking and mapping in real-time.
In: Computer Vision (ICCV), 2011 IEEE International Confer-
ence on, IEEE, 2011, 2320–2327

[NN91] Nocedal, Jorge ; Nash, Stephen G.: A Numerical Study of
the Limited Memory BFGS Method and the Truncated-Newton
Method for Large Scale Optimization. In: SIAM Journal on
Optimization 1 (1991), Nr. 3, S. 358–372

http://dx.doi.org/10.1007/1-4020-3858-8_18
http://dx.doi.org/10.1007/1-4020-3858-8_18
https://github.com/nbergont/qgv
https://github.com/nbergont/qgv

134 BIBLIOGRAPHY

[Nor08] Nordberg, Klas: Efficient triangulation based on 3d euclidean
optimization. In: Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on, IEEE, 2008, 1–4

[NW06] Nocedal, Jorge ; Wright, Stephen J.: Numerical Optimiza-
tion, second edition. World Scientific, 2006

[OH87] Oh, Sung J. ; Hall, Ernest L.: Guidance Of A Mobile
Robot Using An Omnidirectional Vision Navigation System. In:
Robotics and IECON’87 Conferences Bd. 0852 International So-
ciety for Optics and Photonics, 1987, 288-300

[OLT06] Olson, Edwin ; Leonard, John ; Teller, Seth: Fast iter-
ative alignment of pose graphs with poor initial estimates. In:
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, IEEE, 2006, 2262–2269

[PFS14] Pizzoli, Matia ; Forster, Christian ; Scaramuzza, Davide:
REMODE: Probabilistic, monocular dense reconstruction in real
time. In: 2014 IEEE International Conference on Robotics and
Automation, ICRA 2014, Hong Kong, China, May 31 - June 7,
2014, 2014, 2609–2616

[PN97] Peri, Venkata ; Nayar, Shree K.: Generation of perspec-
tive and panoramic video from omnidirectional video. In: Proc.
DARPA Image Understanding Workshop Bd. 1, Citeseer, 1997,
243–245

[PNF+08] Pollefeys, Marc ; Nistér, David ; Frahm, J.-M. ; Ak-
barzadeh, Amir ; Mordohai, Philippos ; Clipp, Brian ; En-
gels, Chris ; Gallup, David ; Kim, S.-J. ; Merrell, Paul
; others: Detailed real-time urban 3d reconstruction from
video. In: International Journal of Computer Vision 78 (2008),
Nr. 2-3, 143–167. http://link.springer.com/article/10.
1007/s11263-007-0086-4

[PO13] Phan, Khoa D. ; Ovchinnikov, Aleksandr V.: Indoor Slam
Using an Omnidirectional Camera. In: Middle-East Journal
of Scientific Research 16 (2013), Nr. 1, 88–94. http://www.
idosi.org/mejsr/mejsr16(1)13/13.pdf

[Pri12] Prince, Simon J. D.: Computer Vision: Models, Learning,
and Inference. 1st. New York, NY, USA : Cambridge University
Press, 2012. – ISBN 1107011795, 9781107011793

http://link.springer.com/article/10.1007/s11263-007-0086-4
http://link.springer.com/article/10.1007/s11263-007-0086-4
http://www.idosi.org/mejsr/mejsr16(1)13/13.pdf
http://www.idosi.org/mejsr/mejsr16(1)13/13.pdf

BIBLIOGRAPHY 135

[PS11] Pagani, Alain ; Stricker, Didier: Structure from Motion
using full spherical panoramic cameras. In: Computer Vision
Workshops (ICCV Workshops), 2011 IEEE International Con-
ference on, IEEE, 2011, 375–382

[QCG+09] Quigley, Morgan ; Conley, Ken ; Gerkey, Brian P. ; Faust,
Josh ; Foote, Tully ; Leibs, Jeremy ; Wheeler, Rob ; Ng,
Andrew Y.: ROS: an open-source Robot Operating System. In:
ICRA Workshop on Open Source Software, 2009

[Ram72] Ramer, Urs: An iterative procedure for the polygonal ap-
proximation of plane curves. In: Computer Graphics and Im-
age Processing 1 (1972), November, Nr. 3, 244–256. http:
//dx.doi.org/10.1016/s0146-664x(72)80017-0. – DOI
10.1016/s0146–664x(72)80017–0. – ISSN 0146664X

[RD06] Rosten, Edward ; Drummond, Tom: Machine learning for
high-speed corner detection. Version: 2006. http://link.
springer.com/chapter/10.1007/11744023_34. In: Com-
puter Vision–ECCV 2006. Springer, 2006, 430–443

[Ree70] Rees, D.W.: Panoramic television viewing system. http://
www.google.com/patents/US3505465. Version:April 7 1970.
– US Patent 3,505,465

[RHFJ13] Recker, Shawn ; Hess-Flores, Mauricio ; Joy, Kenneth I.:
Statistical angular error-based triangulation for efficient and
accurate multi-view scene reconstruction. In: Applications of
Computer Vision (WACV), 2013 IEEE Workshop on, IEEE,
2013, 68–75

[RPG10a] Rituerto, Alejandro ; Puig, Luis ; Guerrero,
J. J.: Comparison of omnidirectional and convention-
al monocular systems for visual slam. In: 10th OM-
NIVIS with RSS (2010). http://www.researchgate.
net/profile/Alejandro_Rituerto/publication/
229069514_Comparison_of_omnidirectional_and_

conventional_monocular_systems_for_visual_SLAM/
links/09e4150bccacacd7bf000000.pdf

[RPG10b] Rituerto, Alejandro ; Puig, Luis ; Guerrero, José J.: Vi-
sual slam with an omnidirectional camera. In: Pattern Recog-
nition (ICPR), 2010 20th International Conference on, IEEE,
2010, 348–351

http://dx.doi.org/10.1016/s0146-664x(72)80017-0
http://dx.doi.org/10.1016/s0146-664x(72)80017-0
http://link.springer.com/chapter/10.1007/11744023_34
http://link.springer.com/chapter/10.1007/11744023_34
http://www.google.com/patents/US3505465
http://www.google.com/patents/US3505465
http://www.researchgate.net/profile/Alejandro_Rituerto/publication/229069514_Comparison_of_omnidirectional_and_conventional_monocular_systems_for_visual_SLAM/links/09e4150bccacacd7bf000000.pdf
http://www.researchgate.net/profile/Alejandro_Rituerto/publication/229069514_Comparison_of_omnidirectional_and_conventional_monocular_systems_for_visual_SLAM/links/09e4150bccacacd7bf000000.pdf
http://www.researchgate.net/profile/Alejandro_Rituerto/publication/229069514_Comparison_of_omnidirectional_and_conventional_monocular_systems_for_visual_SLAM/links/09e4150bccacacd7bf000000.pdf
http://www.researchgate.net/profile/Alejandro_Rituerto/publication/229069514_Comparison_of_omnidirectional_and_conventional_monocular_systems_for_visual_SLAM/links/09e4150bccacacd7bf000000.pdf
http://www.researchgate.net/profile/Alejandro_Rituerto/publication/229069514_Comparison_of_omnidirectional_and_conventional_monocular_systems_for_visual_SLAM/links/09e4150bccacacd7bf000000.pdf

136 BIBLIOGRAPHY

[RRKB11] Rublee, E. ; Rabaud, V. ; Konolige, K. ; Bradski, G.:
ORB: An efficient alternative to SIFT or SURF. In: Computer
Vision (ICCV), 2011 IEEE International Conference on, 2011.
– ISSN 1550–5499, S. 2564–2571

[Rü15] Rünz, Martin: V360 Remote Control - Source Code. https:
//github.com/martinruenz/v360, 2015. – [Online; accessed
12-August-2015]

[SBD04] Smadja, Laurent ; Benosman, Ryad ; Devars, Jean: Cylin-
drical sensor calibration using lines. In: ICIP, IEEE, 2004, 1851-
1854

[SC86] Smith, Randall C. ; Cheeseman, Peter: On the Rep-
resentation and Estimation of Spatial Uncertainly. In:
Int. J. Rob. Res. 5 (1986), Dezember, Nr. 4, S. 56–68.
http://dx.doi.org/10.1177/027836498600500404. – DOI
10.1177/027836498600500404. – ISSN 0278–3649

[Sca08] Scaramuzza, Davide: Omnidirectional vision: from cal-
ibration to robot motion estimation, Citeseer, Diss., 2008.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.149.4525&rep=rep1&type=pdf

[Sch12] Scheggi, S.: Motion estimation algorithms for catadioptric
cameras, University of Siena, Diss., October 2012

[SDMK11] Strasdat, H. ; Davison, A.J. ; Montiel, J.M.M. ; Kono-
lige, K.: Double window optimisation for constant time visual
SLAM. In: Computer Vision (ICCV), 2011 IEEE International
Conference on, 2011. – ISSN 1550–5499, S. 2352–2359

[SEE+12] Sturm, J. ; Engelhard, N. ; Endres, F. ; Burgard, W.
; Cremers, D.: A Benchmark for the Evaluation of RGB-D
SLAM Systems. In: Proc. of the International Conference on
Intelligent Robot Systems (IROS), 2012

[SG11] Salazar-Garibay, Adan: Direct self-calibration of cen-
tral catadioptric omnidirectional cameras, École Nationale
Supérieure des Mines de Paris, Diss., 2011. https://pastel.
archives-ouvertes.fr/pastel-00645697/

https://github.com/martinruenz/v360
https://github.com/martinruenz/v360
http://dx.doi.org/10.1177/027836498600500404
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4525&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4525&rep=rep1&type=pdf
https://pastel.archives-ouvertes.fr/pastel-00645697/
https://pastel.archives-ouvertes.fr/pastel-00645697/

BIBLIOGRAPHY 137

[SG14] Schoenbein, Miriam ; Geiger, Andreas: Omnidirectional 3D
Reconstruction in Augmented Manhattan Worlds. In: Interna-
tional Conference on Intelligent Robots and Systems. Chicago,
IL, USA : IEEE, Oktober 2014, S. 716 – 723

[SMS06a] Scaramuzza, Davide ; Martinelli, Agostino ; Siegwart,
Roland: A Flexible Technique for Accurate Omnidirectional
Camera Calibration and Structure from Motion. In: Proceed-
ings of the Fourth IEEE International Conference on Computer
Vision Systems. Washington, DC, USA : IEEE Computer Soci-
ety, 2006 (ICVS ’06). – ISBN 0–7695–2506–7, 45–

[SMS06b] Scaramuzza, Davide ; Martinelli, Agostino ; Siegwart,
Roland: A toolbox for easily calibrating omnidirectional cam-
eras. In: Intelligent Robots and Systems, 2006 IEEE/RSJ In-
ternational Conference on, IEEE, 2006, 5695–5701

[SNS11] Siegwart, Roland ; Nourbakhsh, Illah R. ; Scaramuzza,
Davide: Introduction to Autonomous Mobile Robots. 2nd. The
MIT Press, 2011. – ISBN 0262015358, 9780262015356

[SP02] Svoboda, Tomáš ; Pajdla, Tomáš: Epipolar geometry for
central catadioptric cameras. In: International Journal of Com-
puter Vision 49 (2002), Nr. 1, 23–37. http://link.springer.
com/article/10.1023/A:1019869530073

[Spe15] Specialist, Glenn VSN Mobil S.: Support ticket number 433.
Personal communication, 05 2015

[SPH98] Svoboda, Tomáš ; Pajdla, Tomáš ; Hlaváč, Václav: Epipo-
lar geometry for panoramic cameras. Version: 1998. http://
dx.doi.org/10.1007/BFb0055669. In: Burkhardt, Hans
(Hrsg.) ; Neumann, Bernd (Hrsg.): Computer Vision — EC-
CV’98 Bd. 1406. Springer Berlin Heidelberg, 1998. – DOI
10.1007/BFb0055669. – ISBN 978–3–540–64569–6, 218-231

[SRL13] Schönbein, Miriam ; Rapp, Holger ; Lauer, Martin:
Panoramic 3d reconstruction with three catadioptric cameras.
Version: 2013. http://link.springer.com/chapter/10.
1007/978-3-642-33926-4_32. In: Intelligent Autonomous
Systems 12. Springer, 2013, 345–353

http://link.springer.com/article/10.1023/A:1019869530073
http://link.springer.com/article/10.1023/A:1019869530073
http://dx.doi.org/10.1007/BFb0055669
http://dx.doi.org/10.1007/BFb0055669
http://link.springer.com/chapter/10.1007/978-3-642-33926-4_32
http://link.springer.com/chapter/10.1007/978-3-642-33926-4_32

138 BIBLIOGRAPHY

[SS08] Scaramuzza, D. ; Siegwart, R.: Appearance-Guided Monoc-
ular Omnidirectional Visual Odometry for Outdoor Ground Ve-
hicles. In: IEEE Transactions on Robotics 24 (2008), Oktober,
Nr. 5, 1015–1026. http://dx.doi.org/10.1109/TRO.2008.
2004490. – DOI 10.1109/TRO.2008.2004490. – ISSN 1552–
3098, 1941–0468

[SSG14] Schönbein, Miriam ; Strauss, Tobias ; Geiger, Andreas:
Calibrating and Centering Quasi-Central Catadioptric Cam-
eras. In: International Conference on Robotics and Automation
(ICRA), 2014

[SSN05] Stewenius, H. ; Schaffalitzky, F. ; Nister, D.: How hard
is 3-view triangulation really? In: Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on Bd. 1,
2005. – ISSN 1550–5499, S. 686–693 Vol. 1

[Sti08] Stillwell, J.: Naive Lie Theory. Springer, 2008 (Under-
graduate Texts in Mathematics). https://books.google.de/
books?id=SuR5OAgxyDIC. – ISBN 9780387782157

[Str12a] Strasdat, Hauke: Local accuracy and global consistency for
efficient SLAM, Imperial College London, Diss., 2012. http://
ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566392

[Str12b] Strasdat, Hauke: Sophus (version 0.9a) C++ implementation
of Lie Groups using Eigen. https://github.com/strasdat/
Sophus, 2012. – [Online; accessed 05-September-2015]

[Stu10] Sturm, Peter: Camera Models and Fundamental Concepts
Used in Geometric Computer Vision. In: Foundations and
Trends R© in Computer Graphics and Vision 6 (2010), Nr. 1-
2, 1–183. http://dx.doi.org/10.1561/0600000023. – DOI
10.1561/0600000023. – ISSN 1572–2740, 1572–2759

[Sue13] Suenderhauf, Niko: OpenSeqSLAM. https://openslam.
org/openseqslam.html, 2013. – [Online; accessed 05-
September-2015]

[Svo00a] Svoboda, Tomáš: Central Panoramic Cameras Design, Geom-
etry, Egomotion. Prague, Czech Republic, Center for Machine
Perception, Czech Technical University, PhD Thesis, April 2000.
– 117 S.

http://dx.doi.org/10.1109/TRO.2008.2004490
http://dx.doi.org/10.1109/TRO.2008.2004490
https://books.google.de/books?id=SuR5OAgxyDIC
https://books.google.de/books?id=SuR5OAgxyDIC
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566392
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566392
https://github.com/strasdat/Sophus
https://github.com/strasdat/Sophus
http://dx.doi.org/10.1561/0600000023
https://openslam.org/openseqslam.html
https://openslam.org/openseqslam.html

BIBLIOGRAPHY 139

[Svo00b] Svoboda, Tomáš: Evaluation, Transformation, and Parame-
terization of Epipolar Conics / Center for Machine Perception,
Czech Technical University. 2000. – research report

[SW03] Seber, G.A.F. ; Wild, C.J.: Nonlinear Regression. Wiley,
2003 (Wiley Series in Probability and Statistics). – 624–627 S.
– ISBN 9780471471356

[TBF05] Thrun, Sebastian ; Burgard, Wolfram ; Fox, Dieter: Proba-
bilistic Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press, 2005. – ISBN 0262201623

[TMHF00] Triggs, Bill ; McLauchlan, Philip F. ; Hartley, Richard I.
; Fitzgibbon, AndrewW.: Bundle adjustment—a modern syn-
thesis. Version: 2000. http://link.springer.com/chapter/
10.1007/3-540-44480-7_21. In: Vision algorithms: theory
and practice. Springer, 2000, 298–372

[TPD08] Tardif, J.-P. ; Pavlidis, Yanis ; Daniilidis, Kostas: Monoc-
ular visual odometry in urban environments using an omnidi-
rectional camera. In: Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, IEEE,
2008, 2531–2538

[Tre13] Treiber, Marco A.: Optimization for Computer Vision: An
Introduction to Core Concepts and Methods. Springer Pub-
lishing Company, Incorporated, 2013. – ISBN 1447152824,
9781447152828

[TZ97] Torr, Philip H. ; Zissermann, A.: Performance characteri-
zation of fundamental matrix estimation under image degrada-
tion. In: Machine Vision and Applications 9 (1997), Nr. 5-6,
321–333. http://link.springer.com/article/10.1007/
s001380050051

[TZ00] Torr, P.H.S. ; Zisserman, A.: MLESAC. In: Com-
put. Vis. Image Underst. 78 (2000), April, Nr. 1, 138–
156. http://dx.doi.org/10.1006/cviu.1999.0832. – DOI
10.1006/cviu.1999.0832. – ISSN 1077–3142

[VH11] Vogiatzis, George ; Hernández, Carlos: Video-based, real-
time multi-view stereo. In: Image and Vision Computing 29
(2011), Nr. 7, 434–441. http://www.sciencedirect.com/
science/article/pii/S0262885611000138

http://link.springer.com/chapter/10.1007/3-540-44480-7_21
http://link.springer.com/chapter/10.1007/3-540-44480-7_21
http://link.springer.com/article/10.1007/s001380050051
http://link.springer.com/article/10.1007/s001380050051
http://dx.doi.org/10.1006/cviu.1999.0832
http://www.sciencedirect.com/science/article/pii/S0262885611000138
http://www.sciencedirect.com/science/article/pii/S0262885611000138

140 BIBLIOGRAPHY

[VL07] Valgren, Christoffer ; Lilienthal, Achim J.: SIFT, SURF
and Seasons: Long-term Outdoor Localization Using Local Fea-
tures. In: EMCR, 2007

[WB95] Welch, Greg ; Bishop, Gary: An Introduction to the Kalman
Filter. Chapel Hill, NC, USA : University of North Carolina at
Chapel Hill, 1995. – Forschungsbericht

[WCN+09] Williams, B. ; Cummins, M. ; Neira, J. ; Newman, P. ;
Reid, I. ; Tardós, J.: A comparison of loop closing techniques
in monocular SLAM. In: Robotics and Autonomous Systems
(2009)

[Yag99] Yagi, Yasushi: Omnidirectional Sensing and Its Applications.
In: Surveys on Image Processing Technologies: Algorithms, Sen-
sors, and Applications, 1999 (IEICE transactions on information
and systems)

[YK90] Yagi, Yasushi ; Kawato, Shinjiro: Panorama scene anal-
ysis with conic projection. In: Intelligent Robots and Sys-
tems’ 90.’Towards a New Frontier of Applications’, Proceedings.
IROS’90. IEEE International Workshop on, IEEE, 1990, 181–
187

[YKT91] Yagi, Y. ; Kawato, S. ; Tsuji, S.: Collision avoidance us-
ing omnidirectional image sensor (COPIS). In: Robotics and
Automation, 1991. Proceedings., 1991 IEEE International Con-
ference on, IEEE, 1991, 910–915

[ZHK+07] Zhu, Jiajun ; Humphreys, Greg ; Koller, David ; Steuart,
Skip ; Wang, Rui: Fast omnidirectional 3D scene acquisition
with an array of stereo cameras. In: 3-D Digital Imaging and
Modeling, 2007. 3DIM’07. Sixth International Conference on,
IEEE, 2007, 217–224

[ZLZH10] Zhang, Liwei ; Li, Youfu ; Zhang, Jianwei ; Hu, Ying: Homog-
raphy estimation in omnidirectional vision under the L∞-norm.
In: Robotics and Biomimetics (ROBIO), 2010 IEEE Interna-
tional Conference on, IEEE, 2010, 1468–1473

	Introduction
	Related work
	Hardware
	List of symbols

	Background
	Representing motion
	Manifolds and Lie Groups
	Optimization
	Maximum likelihood and Maximum a posteriori
	Least Squares
	Gauss-Newton
	Levenberg-Marquardt
	Robust error functions
	Graph-based optimization
	RANSAC

	Camera models
	Pinhole Model
	Omnidirectional Models
	Hyperboloid Catadioptric Model
	Unified Projection Model: Geyer and Daniilidis
	Unified Projection Model: Scaramuzza
	Projecting onto Spheres and Cylinders
	Cylindrical and Equiangular Camera Models

	Multi-View Geometry
	Epipolar Geometry
	Essential Matrix Estimation

	Triangulation

	Monocular SLAM
	Omnidirectional Monocular SLAM
	Keyframe Graphs
	Keypoint-based Methods
	Bundle-Adjustment
	Tracking

	Direct Methods
	Initialization

	Semi-Dense 3D Reconstruction
	Depth Uncertainty

	Loop-Closing
	Implementation
	System overview
	Package: cam-slam
	Package: cam-slam-tests
	Package: cam-slam-viewer

	Data Structures
	Map and Map Point
	Frame
	Keyframe
	Camera Model
	Feature Handler

	Algorithms
	Mapping
	Tracking
	3D Reconstruction

	VSN V.360
	Calibration
	Artifacts

	Results
	Accuracy
	Performance

	Conclusion
	Additional Figures
	Additional Listings

