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Fig. 1: A sequence demonstrating our dynamic SLAM system. Three objects were sequentially placed on a table: first a small

bin (blue label), a flask (yellow) and a teddy bear (green). The results show that all objects were successfully segmented,

tracked and modeled.

Abstract— In this paper we introduce Co-Fusion, a dense
SLAM system that takes a live stream of RGB-D images as
input and segments the scene into different objects (using
either motion or semantic cues) while simultaneously tracking
and reconstructing their 3D shape in real time. We use a
multiple model fitting approach where each object can move
independently from the background and still be effectively
tracked and its shape fused over time using only the information
from pixels associated with that object label. Previous attempts
to deal with dynamic scenes have typically considered moving
regions as outliers, and consequently do not model their shape
or track their motion over time. In contrast, we enable the
robot to maintain 3D models for each of the segmented objects
and to improve them over time through fusion. As a result, our
system can enable a robot to maintain a scene description at the
object level which has the potential to allow interactions with
its working environment; even in the case of dynamic scenes.

I. INTRODUCTION

The wide availability of affordable structured light and

time of flight depth sensors has had enormous impact both on

the democratization of the acquisition of 3D models in real

time from hand-held cameras and on providing robots with

powerful but low-cost 3D sensing capabilities. Tracking the

motion of a camera while maintaining a dense representation

of the 3D geometry of its environment in real time has

become more important than ever [14], [32], [31], [13].

While solid progress has been made towards solving this

problem in the case of static environments, where the only

motion is that of the camera, dealing with dynamic scenes

where an unknown number of objects might be moving

independently is significantly harder. The typical strategy

adopted by most systems is to track only the motion of the

camera relative to the static background and treat moving

objects as outliers whose 3D geometry and motion is not

modeled over time. However, in robotics applications often

it is precisely the objects moving in the foreground that are

of most interest to the robot. If we want to design robots

that can interact with dynamic scenes it is crucial to equip

them with the capability to (i) discover objects in the scene

via segmentation (ii) track and estimate the 3D geometry

of each object independently. These high level object-based

representations of the scene would greatly enhance the

perception and physical interaction capabilities of a robot.

Consider for instance a SLAM system on-board a self-

driving car – tracking and maintaining 3D models of all the

moving cars around it and not just the static parts of the scene

could be critical to avoid collisions. Or think of a robot that

arrives at a scene without a priori 3D knowledge about the

objects it must interact with – the ability to segment, track

and fuse different objects would allow it actively to discover

and learn accurate 3D models of them on the fly through

motion, by picking them up, pushing them around or simply
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observing how they move. An object level scene description

of this kind, has the potential to enable the robot to interact

physically with the scene.

In this paper we introduce Co-FUSION a new RGB-D

based SLAM system that can segment a scene into the

background and different foreground objects, using either

motion or semantic cues, while simultaneously tracking and

reconstructing their 3D geometry over time. Our underlying

assumption is that objects of interest can be detected and seg-

mented in real-time using efficient segmentation algorithms

and then tracked independently over time. Our system offers

two alternative grouping strategies – motion segmentation

that groups together points that move consistently in 3D and

object instance segmentation that both detects and segments

individual objects of interest (at the pixel level) in an RGB

image given a semantic label. These two forms of segmen-

tation allow us not only to detect objects due to their motion

but also objects that might be static but are semantically of

interest to the robot.

Once detected and segmented, objects are added to the

list of active models and are subsequently tracked and their

3D shape model updated by fusing only the data labeled as

belonging to that object. The tracking and fusion threads for

each object are based on recent surfel-based approaches [8],

[31]. The main contribution of this paper is a system that

would allow a robot not only to reconstruct its surrounding

environment but also to acquire the detailed 3D geometry

of unknown objects that move in the scene. Moreover, our

system would equip a robot with the capability to discover

new objects in the scene and learn accurate 3D models

of them through active motion. We demonstrate Co-Fusion

on different scenarios – placing different previously unseen

objects on a table and learning their geometry (see Figure 1),

handing over an object from one person to another (see

Figure 3), hand-held 3D capture of a moving object with

a moving camera (see Figure 9) and on a car driving

scenario (see Figure 5a). We also demonstrate quantitatively

the robustness of the tracking and the reconstruction on some

synthetic and ground truth sequences of dynamic scenes.

II. RELATED WORK

The arrival of the Microsoft Kinect device and the sudden

availability of inexpensive depth sensors to consumers, trig-

gered a flurry of research aimed at real-time 3D scanning.

Systems such as KinectFusion [14] first made it possible to

map the 3D geometry of arbitrary indoor scenes accurately

and in real time, by fusing the images acquired by the depth

camera simply by moving the sensor around the environment.

Access to accurate and dense 3D geometry in real time opens

up applications to rapid scanning or prototyping, augment-

ed/virtual reality and mobile robotics that were previously

not possible with offline or sparse techniques. Successors to

KinectFusion have quickly addressed some of its shortcom-

ings. While some have focused on extending its capabilities

to handle very large scenes [7], [30], [15], [32] or to include

loop closure [31] others have robustified the tracking [32]

or improved memory and scale efficiency by using point-

based instead of volumetric representations [8] that lead to

increased 3D reconstruction quality [10]. Achieving higher

level semantic scene descriptions by using a dense planar

representation [22] or real-time 3D object recognition [23]

further improved tracking performance while opening the

door to virtual or even real interaction with the scene. More

recent approaches such as [26], [11] incorporate semantic

segmentation and even recognition within a SLAM system

in real time. While they show impressive performance, they

are still limited to static scenes.

The core underlying assumption behind many traditional

SLAM and dense reconstruction systems is that the scene is

largely static. How can these dense systems be extended to

track and reconstruct more than one model without compro-

mising real time performance? The SLAMMOT project [29]

represented an important step towards extending the SLAM

framework to dynamic environments by incorporating the

detection and tracking of moving objects into the SLAM

operation. It was mostly demonstrated on driving scenarios

and limited to sparse reconstructions. It is only very recently

that the problem of reconstruction of dense dynamic scenes

in real time has been addressed. Most of the work has been

devoted to capturing non-rigid geometry in real time with

RGB-D sensors. The assumption here is that the camera

is observing a single object that deforms freely over time.

DynamicFusion [13] is a prime example of a monocular

real time system that can fuse together scans of deformable

objects captured from depth sensors without the need for any

pre-trained model or shape template. With the use of a so-

phisticated multi-camera rig of RGB-D sensors 4DFusion [2]

can capture live deformable shapes with an exceptional level

of detail and can deal with large deformations and changes in

topology. On the other hand template based techniques can

also obtain high levels of realism but are limited by their need

to add a preliminary step to capture the template [33] or are

dedicated to tracking specific objects by their use of hand-

crafted or pre-trained models [27]. These include general

articulated tracking methods that either require a geometric

template of the object in a rest pose [28], or prior knowledge

of the skeletal structure [24].

In contrast, capturing the full geometry of dynamic scenes

that might contain more than one moving object has received

more limited attention. Ren et al. [19] propose a method to

track and reconstruct 3D objects simultaneously by refining

an initial simple shape primitive. However, in contrast to our

approach, it can only track one moving object and requires

a manual initialization. [12] propose a combined approach

for estimating pose, shape, and the kinematic structure of

articulated objects based on motion segmentation. While it

is also based on joint tracking and segmentation, the focus

is on discovering the articulated structure, only foreground

objects are reconstructed and its performance is not real time.

Stückler and Behnke [25] propose a dense rigid-body motion

segmentation algorithm for RGB-D sequences. They only

segment the RGB-D images and estimate the motion but do

not simultaneously reconstruct the objects. Finally [3] build a



Fig. 2: Overview of our method showing the data-flow

starting from a new RGBD-frame. A detailed description can

be found in Section III

model of the environment and consider as new objects parts

of the scene that become inconsistent with this model using

change detection. However, this approach requires a human

in the loop to acquire known-correct segmentation and does

not provide real time operation.

Several recent RGB-only methods have also addressed

the problem of monocular 3D reconstruction of dynamic

scenes. Works such as [21], [4], [20] are similar in spirit to

our simultaneous segmentation, tracking and reconstruction

approach. Russell et al. [21] perform multiple model fitting

to decompose a scene into piecewise rigid parts that are

then grouped to form distinct objects. The strength of their

approach is the flexibility to deal with a mixture of non-

rigid, articulated or rigid objects. Fragkiadaki et al. [4]

follow a pipeline approach that first performs clustering of

long term tracks into different objects followed by non-rigid

reconstruction. However, both of these approaches act on

sparse tracks and are batch methods that require all the

frames to have been captured in advance. Our method also

shares commonality with the dense RGB multi-body recon-

struction approach of [20], who also perform simultaneous

segmentation, tracking and 3D reconstruction of multiple

rigid models, with the notable difference that our approach

is online and real time while theirs is batch and takes several

seconds per frame.

III. OVERVIEW OF OUR METHOD

Co-Fusion is a live RGB-D SLAM system that processes

each new frame in real time. As well as maintaining a global

model of the detailed geometry of the background our system

stores models for each object segmented in the scene and is

capable of tracking their motions independently. Each model

is stored simply as a set of 3D points. Our system maintains

two sets of object models: while active models are objects

that are currently visible in the live frame, inactive models

are objects that were once visible, therefore their geometry

is known, but are currently out of view.

Figure 2 illustrates the frame-to-frame operation of our

system. At the start of live capture, the scene is initialized

to contain a single active model – the background. Once the

fused 3D model of the background and the camera pose are

stable after a few frames our system follows the pipeline

approach described below. For each new frame acquired by

the camera the following steps are performed:

Tracking First, we track the 6DOF rigid pose of each active

model in the current frame. This is achieved by minimizing

an objective function independently for each model that

combines a geometric error based on dense iterative closest

point (ICP) alignment and a photometric cost based on the

difference in color between points in the current live frame

and the stored 3D model.

Segmentation In this step we segment the current live

frame associating each of its pixels with one of the active

models/objects. Our system can perform segmentation based

on two different cues: (i) motion and (ii) semantic labels. We

now describe each of these two grouping strategies.

(i) Motion segmentation We formulate motion segmentation

as a labeling problem using a fully connected Conditional

Random Field and optimize it in real time on the CPU with

the efficient approach of [9]. The unary potentials encode the

geometric ICP cost incurred when associating a pixel with

a rigid motion model. The optimization is followed by the

extraction of connected components in the segmented image.

If the connected region occupied by outliers has sufficient

support an object is assumed to have entered the scene and

a new model is spawned and added to the list.

(ii) Multi-class image segmentation As an alternative to mo-

tion segmentation our system can segment object instances

at the pixel level given a class label using an efficient state of

the art approach [17] based on deep learning. This allows us

to segment objects based on semantic cues. For instance, in

an autonomous driving application our system could segment

not just moving but also stationary cars.

Fusion Using the newly estimated 6-DOF pose, the dense

3D geometry of each active model is updated by fusing the

points labeled as belonging to that model. We used a surfel-

based fusion approach related to the methods of [8] and [31].

While the tracking and fusion steps of our pipeline run

on the GPU, the segmentation step runs on the CPU. The

result is an RGB-D SLAM system that can maintain an up-

to-date 3D map of the static background as well as detailed

3D models for up to 5 different objects at 12 frames per

second.

IV. NOTATION AND PRELIMINARIES

We use Ω to refer to the 2D image domain that contains

all the valid image coordinates. These are denoted as u =
(ux, uy)

T ∈ Ω and their homogeneous coordinates as u̇ =
(uT , 1)T . An RGB-D frame contains both a depth image D
of depth pixels d(u) : Ω → R and an RGB image C of

color pixels c(u) : Ω → N
3. The greyscale intensity value

of pixel u given color c(u) = [cr, cg, cb] in image C is given

by I(u) =
(cr+cg+cb)

3 ∈ R. The perspective projection of a

3D point p = (x, y, z)T is specified as u = π(Kp) where

π : R3 → R
2 π(p) = (x/z, y/z)T . The back-projection of

a point u ∈ Ω given its depth d(u) can be expressed as

π−1(u,D) = K−1u̇d(u) ∈ R
3.

Similarly to [8] and [31], we use a surfel-based map

representation. For each active and inactive model a list

of unordered surfels Mm is maintained, where each sur-

fel Ms
m ∈ (p ∈ R

3,n ∈ R
3, c ∈ N

3,w ∈ R, r ∈ R, t ∈ R
2)



is a tuple of position, normal, color, weight, radius and two

timestamps.

Given that we are modeling dynamic scenes where not

just the camera but other objects might move, we use Tt =
{Ttm(·)} to describe the the set of Mt rigid transformations

that encode the pose of each active model Mm at time

instant t with respect to the global reference frame. In other

words, Ttm is the rigid transform Ttm(pm) = Rtmpm +
ttm, that aligns a 3D point pm lying on model m expressed

in the global reference frame, to its current position at time

t. Rtm ∈ SO3 and ttm ∈ R
3 are respectively the rotation

matrix and translation vector. We reserve the notation Ttb

to refer specifically to the rigid transforms associated with

the background model.

V. TRACKING ACTIVE MODELS

For each input frame at time t and for each active

model Mm we track its global pose Ttm by registering the

current live depth map with the predicted depth map in the

previous frame, obtained by projecting the stored 3D model

using the estimated pose for t − 1. We track each active

model independently by running the optimization described

below selecting only the 3D map points that are labeled as

belonging to that specific model.

A. Energy

For each active model Mm, we minimize a cost function

that combines a geometric term based on point-to-plane

ICP alignment and a photometric color term that minimizes

differences in brightness between the predicted color image

resulting from projecting the stored 3D model in the previous

frame and the current live color frame.

Em
track = min

Tm

(Em
icp + λEm

rgb) (1)

This cost function is closely related to the tracking threads

of other RGB-D based SLAM systems [31], [8]. However,

the most notable difference is that while [31], [8] assume

that the scene is static and only track a single model, Co-

Fusion can track various models while maintaining real-time

performance.

B. Geometry Term

For each active model m in the current frame t we seek to

minimize the cost of the point-to-plane ICP registration error

between (i) the 3D back-projected vertices of the current live

depth map and (ii) the predicted depth map of model m from

the previous frame t− 1:

Em
icp =

∑

i

((vi −Tmvi

t
) · ni)2 (2)

where vi
t

is the back-projection of the i-th vertex in the

current depth-map Dt; and vi and ni are respectively the

back-projection of the i-th vertex of the predicted depth-map

of model m from the previous frame t − 1 and its normal.

Tm describes the transformation that aligns model m in the

previous frame t− 1 with the current frame t.

C. Photometric Color Term

Given (i) the current depth image; (ii) the current estimate

of the 3D geometry of each active model; and (iii) the

estimated rigid motion parameters that align each model with

respect to the previous frame t−1, it is possible to synthesize

projections of the scene onto a virtual camera aligned with

the previous frame.

The tracking problem then becomes one of photometric

image registration where we minimize the brightness con-

stancy between the live frame and the synthesized view of

the 3D models in frame t− 1. The cost takes the form

Em
rgb =

∑

u∈Ωm

(It(u)− It−1(π(KTmπ
−1(u,Dt))

2 (3)

where Tm is the rigid transformation that aligns active model

Mm between the previous frame t−1 and the current frame

and It−1(·) is a function that provides the color attached to

a vertex on the model in the previous frame t− 1.

For reasons of robustness and efficiency this optimization

is embedded in a coarse-to-fine approach using a 4-layer

spatial pyramid. Our GPU implementation builds on the open

source code release of [31].

VI. MOTION SEGMENTATION

Following the tracking step we have new estimates for the

Mt rigid transformations {Ttm} that describe the absolute

pose of each active model with respect to the global reference

frame at time t.
We now formulate the motion segmentation problem for

a new input frame t as a labeling problem, where the labels

are the Mt rigid transformations {Ttm}. We seek a labeling

x(u) : Ω → Lt that assigns a label ℓ ∈ Lt = {1, . . . , |Mt|+
1} to each point u in the current frame associating it with

the motion of one of the Mt currently active rigid models

or an outlier label ℓ|Mt|+1. Note that the number of active

models (labels) Mt will vary per frame as new objects may

appear or disappear in the scene.

In practice, to allow the motion segmentation to run in real

time on the CPU, we first over segment the current frame into

SLIC super-pixels [1] using the fast implementation of [18]

and apply the labeling algorithm at the super-pixel level. The

position, color and depth of each super-pixel is estimated by

averaging those of the pixels inside it.

We follow the energy minimization approach of [9] that

optimizes the following cost function with respect to the

labeling xt ∈ LS

E(xt) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj) (4)

where i and j are indices over the image super-pixels ranging

from 1 to S (the total number of super-pixels).

The unary potentials ψu(xi) denote the cost associated with

a label assignment xi for super-pixel si. Given that we are

solving a motion segmentation problem, the unary potentials

are the estimated ICP alignment costs incurred when applying

the rigid transformation associated with each label to the
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Fig. 3: In this handover sequence a toy teddy bear is handed from one person to another. Co-Fusion can correctly segment

and model four bodies: The background, the teddy-bear and two arms. At the start, the left arm and teddy are represented

by the same model, since they move together. When the handover occurs, however, the arm becomes separated from the

teddy and all four objects are tracked independently.
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Fig. 4: Heat-map visualization of the unary potentials for

each of the four model labels in the handover scene (see

Figure 3). Brighter values correspond to a higher probability

of each label being assigned to a super-pixel.

back-projection of the center of each super-pixel si as defined

in (2). Note that this is a purely geometric cost. If computing

the cost ψu(xi) fails due to lack of geometry projecting to

si, we assign a fixed cost corresponding to a misalignment

of 1% of the depth-range of the current frame. This prevents

labels from growing outside of the object bounds. For each

super-pixel, the unary cost associated with the outlier label

ℓ|Mt|+1 is determined by the cost of the best fitting label

and as a result receives low values only if none of the rigid

models can explain the motion of the super-pixel.

The pairwise potentials ψp(xi, xj) can be expressed as

ψp(xi, xj) = µ(xi, xj)

K∑

m=1

ωmkm(fi, fj). (5)

where µ(xi, xj) encapsulates the classic Potts model that pe-

nalizes nearby pixels taking different labels, and km(fi, fj)
are contrast-sensitive potentials that measure the similarity

between the appearance of pixels. This results in a cost

that encourages super-pixels i and j to take the same label

if the distance between their feature vectors fi and fj is

small. In practice we characterize each super-pixel i with

the 6D feature vector fi that encodes its 2D location, RGB

color and depth value. We set km to be Gaussian kernels

km(fi, fj) = exp(− 1
2 (fi − fj)

TΛm(fi − fj)) with Λm the

inverse covariance matrix 1.

We use the efficient inference method of [9] to optimize

the labeling, which can be computed in real time on the

CPU. The output of this optimization is a soft assignment

of labels to each super-pixel i. To convert this into a hard

assignment we simply take the maximum of all the label

assignments and associate each super-pixel with the motion

of a single active model.

Post-processing. Following the segmentation we perform

a series of post-processing steps to obtain more robust

results. First we perform connected components for all the

labels and we merge models that have similar rigid trans-

formations. Secondly we ensure that disconnected regions

are modeled separately by suppressing all except the largest

component with the same label. In a similar way, components

whose size falls below a threshold τ are removed.

A. Addition of New Models

If the connected region occupied by outliers is larger than

3% of the total number of pixels, an object is assumed to

have entered the scene and a new label/object is spawned. If

part of the geometry of this new object was already in the

map (for instance, if an object started moving after having

been part of the background map for a while) we attempt

to remove the duplicate reconstruction. In practice we found

that a good strategy is to remove areas with a high ICP error

from the background. This is illustrated in Figure 6.

On the other hand, if a label disappeared and does not

reappear within a certain number of frames, it is assumed that

the respective model left the scene. In this case the model

1 In practice we set K = 2 and the inverse covariance
matrices to Λ1 =diag(1/θ2α, 1/θ

2
α, 1/θ

2

β , 1/θ
2

β , 1/θ
2

β , 1/θ
2
γ) and

Λ2 =diag(1/θ2δ , 1/θ
2

δ , 0, 0, 0, 0)



will be added to the inactive list, if it contains enough surfels

with a high confidence and is deleted otherwise.

VII. OBJECT INSTANCE SEGMENTATION

In this section we investigate the use of semantic cues to

segment objects in the scene which allows to deal both with

moving and static objects. We use the top performing state

of the art method for object instance segmentation [17] to

segment objects of interest. SharpMask [17] is an augmented

feed-forward network able to predict object proposals and

object masks simultaneously. The architecture has 3 ele-

ments: A pre-trained network for feature map extraction, a

segmentation branch and a branch that scores the ‘objectness’

of an image patch. The results of SharpMask (an example

segmentation can be seen in Figure 5a) can be given directly

to Co-Fusion after temporal consistency is imposed between

consecutive frames. The segmentation can be run on a limited

set of labels to segment only objects of a chosen class, for

instance all the tools lying on a table. We used the publicly

available models pre-trained on the COCO dataset [16].

VIII. FUSION

During the tracking stage, active models Mm are pro-

jected to the camera view using splat rendering in order to

align individual model poses. In the subsequent fusion stage

the surfel maps are updated by merging the newly available

RGB-D frame into the existing models. After projectively

associating image coordinates u with corresponding surfels

in the model Mm, an update scheme similar to [8] is used.

IX. EVALUATION

We carried out a quantitative evaluation both on synthetic

and real sequences with ground truth data. Appropriate syn-

thetic sequences with Kinect-like noise [6] were specifically

created for this work (ToyCar3 and Room4) and have been

made publicly available, along with evaluation tools. For

the ground truth experiments on real data we attached

markers to a set of objects, as shown in Figure 10, and ac-

curately reconstructed them using a NextEngine 3D-scanner.

The scenes were recorded with a motion-capture system

(OptiTrack) to obtain ground-truth data for the trajectories.

An Asus Xtion was used to acquire the real sequences.

Although the quality of each stage in our pipeline depends on

the performance of every other stage, i.e. a poor segmentation

might be accountable for a poor reconstruction, it is valuable

to evaluate the different elements.

Pose estimation We compared the estimated and ground-

truth trajectories by computing the absolute trajectory (AT)

root-mean-square errors (RMSE) for each of the objects

in the scene. Results on synthetic sequences are shown in

table II and Figure 7. Results on the real GT sequences com-

paring estimated and GT trajectories (given by OptiTrack)

can be found in supplementary material 2.

Motion segmentation As the result of the segmentation

stage is purely 2D, conventional metrics for segmentation

2Please see http://visual.cs.ucl.ac.uk/pubs/cofusion/

index.html for additional experimental evaluation and video.

Object Error (avg/std, in mm) Outlier-1cm Outlier-5cm

E
so

n
e1

Head 3.216 / 5.94 4.38% 0.016%
Dice 5.805 / 7.27 19.86% 0.0%
Gnome 5.051 / 6.10 12.39% 0.0%

TABLE I: Average error and standard deviation of the 3D

reconstruction (mm) for the Esone1 ground truth scene

(column 1). Percentage of surfels with reconstruction errors

larger than 1cm (column 2) and 5cm (column 3).

Co-Fusion ElasticFusion Kintinuous

T
o
yC

a
r3 Camera 6.126 5.917 0.999

Car1 77.818 - -
Car2 14.403 - -

R
o
o
m

4

Camera 9.326 12.169 1.630
Airship 9.108 / 10.118 - -
Car 2.862 - -
Rockinghorse 58.007 - -

TABLE II: AT-RMSEs of estimated trajectories for our

synthetic sequences (mm). Two trajectories are associated

with the airship, since this object was split into two parts.

quality can be used. We calculated the intersection-over-

union measure per label for each frame of the synthetic

sequences (we did not have ground truth segmentation for

the real sequence). Figure 7 shows the IoU for each frame

in the ToyCar3 and Room4 sequences.

Fusion To assess the quality of the fusion, one could either

inspect the 3D reconstruction errors of each object separately

or jointly, by exporting the geometry in a unified coordinate

system. We used the latter on the synthetic sequences. This

error is strongly conditioned on the tracking, but nicely

highlights the quality of the overall system. For each sur-

fel in the unified map of active models, we compute the

distance to the closest point on the ground-truth meshes,

after aligning the two representations. Figure 8 visualizes the

reconstruction error as a heat-map and highlights differences

to Elastic-Fusion. For the real scene Esone1 we computed

the 3D reconstruction errors of each object independently.

The results are shown in Table I and Figure 10.

Qualitative results We performed a set of qualitative exper-

iments to demonstrate the capabilities of Co-Fusion. One of

its advantages is that it eases the 3D scanning process, since

we do not need to rely on the static-world assumption. In

particular, a user can hold and rotate an object in one hand

while using the other to move a depth-sensor around the

object. This mode of operation offers more flexibility, when

compared to methods that require a turntable, for instance.

Figure 9 shows the result of such an experiment.

Our final demonstration shows Co-Fusion continuously

tracking and refining objects as they are placed on a table

one after the other, as depicted in Figure 1. This functionality

can be useful in robotics applications, where objects have

to be moved by an actuator. The result of the successful

segmentation is shown in Figure 1(b).

X. CONCLUSIONS

We have presented Co-Fusion, a real time RGB-D SLAM

system capable of segmenting a scene into multiple objects

using motion or semantic cues, tracking and modeling them

http://visual.cs.ucl.ac.uk/pubs/cofusion/index.html
http://visual.cs.ucl.ac.uk/pubs/cofusion/index.html


(a) Semantic labels (b) Labels in 3D (front view) (c) Labels in 3D (top view)

Fig. 5: Results based on the semantic labeling. Here we show a scene from the virtual KITTI dataset [5], which would be

difficult for our motion based segmentation. While 5a shows semantic labels generated by a CNN, the remaining images

show the reconstruction and highlight the object labels.

(a) Color image (b) Motion segmentation (c) Colored 3D models (d) Reconstruction result

Fig. 6: Visualization of the stages of Co-Fusion based on our synthetic ToyCar3 sequence.
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Fig. 7: Comparison between the ground truth and estimated trajectories for each of the objects in the (a) ToyCar3 and

(b) Room4 sequences. Intersection-over-union measure for each label and each frame in the (c) ToyCar3 and (d) Room4

sequences. The graphs for car1 and car2 start to appear later in time, since the objects were not segmented before.

accurately while also maintaining a model of the environ-

ment. We have demonstrated its use in robotics and 3D

scanning applications. The resulting system could enable a

robot to maintain a scene description at the object; even in

the case of dynamic scenes.
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