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Figure 1: Given a localized input RGB sequence, FroDO dectects objects and infers their pose and a progressively fine
grained and expressive object shape representation. Results on a real-world sequence from ScanNet [7].

Abstract

Object-oriented maps are important for scene under-
standing since they jointly capture geometry and seman-
tics, allow individual instantiation and meaningful reason-
ing about objects. We introduce FroDO, a method for accu-
rate 3D reconstruction of object instances from RGB video
that infers object location, pose and shape in a coarse-to-
fine manner. Key to FroDO is to embed object shapes in a
novel learnt space that allows seamless switching between
sparse point cloud and dense DeepSDF decoding. Given
an input sequence of localized RGB frames, FroDO first ag-
gregates 2D detections to instantiate a category-aware 3D
bounding box per object. A shape code is regressed using
an encoder network before optimizing shape and pose fur-
ther under the learnt shape priors using sparse and dense
shape representations. The optimization uses multi-view
geometric, photometric and silhouette losses. We evaluate
on real-world datasets, including Pix3D, Redwood-OS, and
ScanNet, for single-view, multi-view, and multi-object re-
construction.

* The first two authors contributed equally.

1. Introduction

Localizing and reconstructing 3D objects from RGB
video is a fundamental problem in computer vision. Tra-
ditional geometry-based multi-view reconstruction [40, 41]
can deal with large scenes given rich textures and large
baselines but it is prone to failure in texture-less regions or
when the photo-consistency assumption does not hold. Be-
sides, these methods only provide geometry information but
no semantics. An even more challenging question is how to
fill in unobserved regions of the scene. Recently, learning
based 3D reconstruction methods [2, 6, 9, 12, 28, 50] have
emerged and achieved promising results. However, data-
driven approaches rely heavily on synthetic renderings and
do not generalize well to natural images. On the other hand,
we have seen impressive progress in 2D recognition tasks
such as detection and segmentation [15, 21, 26].

In this paper, we propose a system for object-centric re-
construction that leverages the best properties of 2D recog-
nition, learning-based object reconstruction and multi-view
optimization with deep shape priors. As illustrated in
Fig. 2 FroDO takes a sequence of localized RGB images
as input, and progressively outputs 2D and 3D bound-
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Figure 2: Given a sequence of calibrated, and localized RGB images, FroDO detects objects and infers their shape code and
per-frame poses in a coarse-to-fine manner. We demonstrate FroDO on challenging sequences from real-world datasets that
contain a single object (Redwood-OS) or multiple objects (ScanNet).

ing boxes, 7-DoF pose, a sparse point cloud and a dense
mesh for 3D objects in a coarse-to-fine manner. FroDO
demonstrates deep prior-based 3D reconstruction of real
world multi-class and multi-object scenes from real-world
RGB video. Related approaches are limited to single
view [9,13,14,28,50], or multi-view but single objects [24],
are purely geometry-based [40,41], or require depth and ob-
ject scans [17, 18].

Choosing the best shape representation remains a key
open problem in 3D reconstruction. Signed Distance Func-
tions (SDF) have emerged as a powerful representation for
learning-based reconstruction [28, 32] but are not as com-
pact or efficient as point clouds. One of our key contribu-
tions is a new joint embedding where shape codes can be
decoded to both a sparse point cloud and a dense SDF. Our
joint shape embedding enables seamless switching between
both representations and can be used as a shape prior for
shape optimization, enabling faster inference. As Fig. 2 il-
lustrates, FroDO takes a calibrated, and localized image se-
quence as input and proceeds in four distinct steps: 2D de-
tection, data association, single-view shape code inference
and multi-view shape code optimization. First, per-frame
2D bounding box detections are inferred using an off-the-
shelf method [15]. Secondly, bounding boxes are associ-
ated over multiple frames and lifted into 3D. Next, a 64D
code is predicted for each detection of the same object in-
stance, using a novel encoder network. Per-image shape
codes of the same instance are fused into a single code. Fi-
nally, shape code and pose are further refined by minimizing
terms based on geometric, photometric and silhouette cues
using our joint embedding as a shape prior. The final out-
puts of our system are dense object meshes placed in the
correct position and orientation in the scene.

The contributions of our paper are as follows: (i) FroDO
takes as input RGB sequences of real world multi-object
scenes and infers an object-based map, leveraging 2D
recognition, learning-based 3D reconstruction and multi-

view optimization with shape priors. (ii) We introduce a
novel deep joint shape embedding that allows simultane-
ous decoding to sparse point cloud and continuous SDF
representations, and enables faster shape optimization. (iii)
We introduce a new coarse-to-fine multi-view optimization
approach that combines photometric and silhouette consis-
tency costs with our deep shape prior. (iv) FroDO out-
performs state of the art 3D reconstruction methods on
real-world datasets — Pix3D [44] for single-object single-
view and Redwood-OS [4] for single-object multi-view. We
demonstrate multi-class and multi-object reconstruction on
challenging sequences from the ScanNet dataset [7].

2. Related Work

At its core our proposed system infers dense object shape
reconstructions from RGB frames, so it relates to multiple
areas in 3D scene reconstruction and understanding.
Single-view learning-based shape prediction In recent
years, 3D object shape and pose estimation from images
has moved from being purely geometric towards learning
techniques, which typically depend on synthetic rendering
of ShapeNet [3] or realistic 2d-3d datasets like Pix3d [44].
These approaches can be categorized based on the shape
representation utilized, for example occupancy grids [6,50],
point clouds [9], meshes [47], or implicit functions [28].
Gkioxari et al. [12] jointly train detection and reconstruc-
tion by augmenting Mask RCNN with an extra head that
outputs volume and mesh.

Our coarse-to-fine reconstruction pipeline includes a
single-image encoder decoder network that predicts a la-
tent shape code, point cloud, and SDF for each detected
instance. Our single-view reconstruction network leverages
a novel joint embedding that simultaneously outputs point
cloud and SDF (Fig. 3). Our quantitative evaluation shows
that our approach provides better single view reconstruction
than competing methods.



Multi-view category-specific shape estimation Structure-
from-Motion (SfM) and simultaneous localization and map-
ping (SLAM) are useful to reconstruct 3D structure from
image collections or videos. However, traditional meth-
ods are prone to failure when there is a large gap be-
tween viewpoints, generally have difficulty with filling fea-
tureless areas, and cannot reconstruct occluded surfaces.
Deep learning approaches like 3D-R2N2 [6], LSM [19],
and Pix2Vox [51] have been proposed for 3D object shape
reconstruction. These can infer object shape from either
single or multiple observations using RNN or voxel based
fusion. However, these fusion techniques are slow and data
association is assumed.

3D reconstruction with shape priors These methods are
the most closely related to our approach since they also
use RGB video as input and optimize object shape and
pose using 3D or image-based reprojection losses such as
photometric and/or silhouette terms while assuming, of-
ten category-specific, learnt compact latent shape spaces.
Some examples of the low dimensional latent spaces used
are PCA [23, 48], GPLVM [8, 35, 37] or a learnt neural net-
work [24]. In similar spirit we optimize a shape code for
each object, using both 2D and 3D alignment losses, but
we propose a new shape embedding that jointly encodes
point cloud and DeepSDF representations and show that
our coarse-to-fine optimization leads to more accurate re-
sults. These optimizable codes have also been used to infer
the overall shape of entire scenes [1, 42] without lifting the
representation to the level of objects. Concurrent work [25]
proposes to optimize DeepSDF embeddings via sphere trac-
ing, closely related to FroDO’s dense optimization stage.
We chose to formulate the energy via a proxy mesh, which
scales better when many views are used.

Object-aware SLAM Although our system is not sequen-
tial or real-time, it shares common ground with recent
object-oriented SLAM methods. Visual SLAM has re-
cently evolved from purely geometric mapping (point, sur-
face or volumetric based) to object-level representations
which encode the scene as a collection of reconstructed ob-
ject instances. SLAM++ [39] demonstrated one of the first
RGB-D object-based mapping systems where a set of pre-
viously known object instances were detected and mapped
using an object pose graph. Other instance-based object-
aware SLAM systems have either aligned objects from a
pre-trained database to volumetric maps [45] or models
learnt during an exploration step to a surfel representa-
tion [43]. In contrast, others have focused on online ob-
ject discovery and modeling [5] to deal with unknown ob-
ject instances, dropping the need for known models and
pre-trained detectors. Recent RGB-D object-aware SLAM
methods leverage the power of state of the art 2D instance
semantic segmentation masks [15] to obtain object-level
scene graphs and per-object reconstructions [27] even in the

Figure 3: Our new joint shape embedding leverages the ad-
vantages of sparse point-based (efficiency) and dense sur-
face (expressiveness) object shape representations.

case of dynamic scenes [38, 52]. Object oriented SLAM
has also been extended to the case of monocular RGB-
only [11, 16, 31, 33, 34] or visual inertial inputs [10]. Pil-
lai and Leonard [34] aggregate multiview detections to per-
form SLAM-aware object recognition and semi-dense re-
construction, while [31] fit per-object 3D quadric surfaces.
CubeSLAM [53] proposes a multi-step object reconstruc-
tion pipeline where initial cuboid proposals, generated from
single view detections, are further refined through multi-
view bundle-adjustment.

3. Method Overview
FroDO infers an object-based map of a scene, in a

coarse-to-fine manner, given a localized set of RGB im-
ages. We assume camera poses and a sparse point cloud
have been estimated using standard SLAM or SfM methods
such as ORB-SLAM [29] or COLMAP [40, 41]. We rep-
resent the object-based map as a set of object poses {T kwo}
with associated 3D bounding boxes {bbk3} and shape codes
{zk}. Tba denotes a transformation from coordinate sys-
tem a to b. Our new joint shape embedding is described in
Sec. 4.

The steps in our pipeline are illustrated in Fig. 2: First
(Sec. 5.1) objects are detected in input images using any
off-the-shelf detector [15], correspondences are established
between detections of the same object instance in different
images and 2D bounding boxes are lifted into 3D, which
enables occlusion reasoning for view selection. Second, a
64D shape code is predicted for each visible cropped detec-
tion of the same object, using a novel convolutional neural
network (Sec. 5.2). Codes are later fused into a unique ob-
ject shape code (Sec. 5.2). Finally, object poses and shape
code are incrementally refined by minimizing energy terms
based on geometric and multiview photometric consistency
cues using our joint shape embedding as a prior (Sec. 5.3).

4. Joint Shape Code Embedding
We propose a new joint latent shape-code space to rep-

resent and instantiate complete object shapes in a compact
way. This novel embedding is also used as a shape prior
to efficiently optimize object shapes from multi-view ob-



Figure 4: Joint latent shape space interpolation between 3 ShapeNet instances with ground-truth codes. Pointcloud and SDF
decodings of intermediate codes are coherent.

servations. We parametrize object shapes with a latent code
z ∈ R64, which can be jointly decoded by two generative
models X = Gs(z) and φ = Gd(z) into an explicit sparse
3D pointcloud X and an implicit signed distance function
φ. While the pointcloud decoder generates 2048 samples on
the object surface, the SDF decoder represents the surface
densely via its zero-level set. The decoders are trained si-
multaneously using a supervised reconstruction loss against
ground-truth shapes on both representations:

L = λ1DC(Gs(z),Xgt) + λ2Lφ +
1

σ2
‖z‖2, (1)

Lφ = |clamp(Gd(z), δ)− clamp(dgt, δ)|, (2)

DC(A,B) =
1

|A|
∑
x∈A

min
y∈B
‖x− y‖22 (3)

+
1

|B|
∑
y∈B

min
x∈A
‖x− y‖22

where DC evaluates a symmetric Chamfer distance, and
Lφ is a clipped L1 loss between predicted Gd(z) and
ground-truth dgt signed distance values with a threshold
δ = 0.1. We use 3D models from the CAD model reposi-
tory ShapeNet [3] as ground truth shapes. While the orig-
inal DeepSDF architecture [32] is employed for the SDF
decoder, a variant of PSGN [9] is used as the pointcloud
decoder. Its architecture is described in detail in the supple-
mentary material. Joint embeddings decoded to both rep-
resentations are illustrated in Fig. 4. The trained decoders
allow us to leverage learnt object shape distributions, and
act as effective priors for optimization based 3D reconstruc-
tion. In contrast to related prior-based shape optimization
approaches [24, 25] where the shape embedding is special-
ized to a specific representation, our embedding offers the
advantages of both sparse and dense representations at dif-
ferent stages of the optimization. Although DeepSDF can
represent smooth and dense object surfaces, it is slow to
evaluate as each point needs a full forward pass through
the decoder. In contrast, the pointcloud representation is
two orders of magnitude faster but fails to capture shape de-
tails. Our strategy is therefore to infer an initial shape using

Figure 5: Data association: 3D line-segment clustering to
predict b-box correspondences. Colors denote instance IDs.

the point-based decoder before switching to the DeepSDF
decoder for further refinement (Sec. 5.3). While inspired
by [30] to use multiple shape representations, our embed-
ding offers two advantages. First, the same latent code is
used by both decoders, which avoids the need for a latent
code consistency loss [30]. Secondly, training a shape en-
coder for each representation is not required.

5. From Detections to 3D Objects

5.1. Object Detection and Data Association

We use a standard instance segmentation network [15]
to detect object bounding boxes bb2i and object masks M
in the input RGB video. To enable multi-view fusion and
data aggregation for object shape inference, we predict cor-
respondences between multiple detections of the same 3D
object instance. Since the 3D ray through the center of a
2D bounding box points in the direction of the object cen-
ter, the set of rays from all corresponding detections should
approximately intersect. Knowledge of the object class sets
reasonable bounds on the object scale to further restrict the
expected object center location in 3D to a line segment as
indicated by the thicker line segments in Fig. 5.

Object instance data association can then be cast as a



clustering problem in which the goal is to identify an un-
known number of line segment sets that approximately in-
tersect in a single point. We adopt an efficient iterative non-
parametric clustering approach similar to DP-means [22]
where the observations are line segments and the cluster
centers are 3D points. Further details of the clustering algo-
rithm are given in the supplementary material.

After clustering, each object instance k is associated with
a set of 2D image detections Ik and a 3D bounding box bb3k,
computed from the associated bounding box detections as
described in [31]. By comparing the projection of the 3D
object bounding box and the 2D detection box, we reject
detections that have low IoU, an indication of occlusions or
truncations. The filtered set of image detections I ′k is used
in all following steps. Examples of the filtered detections
are shown in supplementary material.

5.2. Single-view Shape Code Inference and Fusion

As illustrated in the shape encoding section of Fig. 2, a
64D object shape code is predicted for each filtered detec-
tion. We train a new encoder network that takes as input a
single image crop and regresses its associated shape code
zi ∈ R64 in the joint latent space described in Sec. 4.

The network is trained in a fully supervised way. How-
ever, due to the lack of 3D shape annotations for real
world image datasets, we train the image encoder using
synthetic ShapeNet [3] renderings. Specifically, we gener-
ate training data by rendering ShapeNet CAD models with
random viewpoints, materials, environment mapping, and
background. We also perturb bounding boxes of rendered
objects and feed perturbed crops to the encoder during train-
ing. We chose a standard ResNet architecture, modifying its
output to the size of the embedding vector. During training,
we minimize the Huber loss between predicted and target
embeddings, which we know for all CAD models. For the
experiment on ScanNet in Sec. 6.3, we fine-tune the encoder
network with supervised data from Pix3D [44].
Multi-view Shape Code Fusion For each object instance
k we fuse all single-view shape codes {zi|i ∈ I ′k} into a
unique code z0

k. We propose two fusion approaches and
evaluate them in Table 4: (i) Average – we average shape
codes to form a mean code zmean

k ; (ii) Majority voting –
We find the 4 nearest neighbors of each predicted code zi
among the models in the training set. The most frequent
of these is chosen as zvote

k . Unlike the average code, zvote
k

guarantees valid shapes from the object database.

5.3. Multi-view Optimization with Shape Priors

For each object instance k, all images with non-occluded
detections are used as input to an energy optimization ap-
proach to estimate object pose T kwo and shape code zk in
two steps. First, we optimize the energy over a sparse set
of surface points, using the point decoder Gs(z) as a shape

prior. This step is fast and efficient due to the sparse nature
of the representation as well as the light weight of the point-
cloud decoder. Second, we further refine pose and shape
minimizing the same energy over dense surface points, now
using the DeepSDF decoderGd(z) as the prior. This slower
process is more accurate since the loss is evaluated over all
surface points, and not sparse samples.
Energy. Our energy is a combination of losses on the 2D
silhouette Es, photometric consistency Ep and geometry
Eg with a shape code regularizer Er:

E = λs · Es + λp · Ep + λg · Eg + λr · Er , (4)

where λs,p,g,r weigh the contributions of individual terms.
The regularization term Er = 1

σ2 ‖z‖22 encourages shape
codes to take values in valid regions of the embedding, anal-
ogously to the regularizer in Eq. 1. Note that the same en-
ergy terms are used for sparse and dense optimization – the
main differences being the number of points over which the
loss is evaluated, and the decoder G(z) used as shape prior.
Initialization. The 64D shape code is initialized to the
fused shape code (Sec. 5.2), while the pose Two is initial-
ized from the 3D bounding box bb3k (Sec. 5.1): translation
is set to the vector joining the origin of the world coordi-
nate frame with the 3D bounding box centroid, scale to the
3D bounding box height and rotation is initialised using ex-
haustive search for the best rotation about the gravity direc-
tion – under the assumption that objects are supported by a
ground-plane perpendicular to gravity.
Sparse Optimization. Throughout the sparse optimization,
the energy E is defined over the sparse set of 2048 surface
points X, decoded with the point-based decoderGs(z). The
energy E is minimized using the Adam optimizer [20] with
autodiff. We now define the energy terms.
• The photometric loss Ep encourages the colour of 3D
points to be consistent across views. In the sparse case, we
evaluate Ep by projecting points in X to N nearby frames
via known camera poses Tcw and comparing colors in ref-
erence IR and source ISi images under a Huber norm ‖.‖h:

Ep(X, IR, IS1 , ..., ISN ) =
1

N · |X|

N∑
i=1

∑
x∈X

‖r(IR, ISi )‖h

r(IR, IS) = IR(π(TR
cwx))− IS(π(TS

cwx))
(5)

where π(x) projects 3D point x into the image.
• The silhouette loss Es penalizes discrepancies between
the 2D silhouette obtained via projection of the current 3D
object shape estimate and the mask predicted with MaskR-
CNN [15]. In practice, we penalize points that project out-
side the predicted mask using the 2D Chamfer distance:

Es(zk,T
k
wo) = DC(M, π(TcwT

k
woG(z))) (6)

where M is the set of 2D samples on the predicted mask and
DC is the symmetric Chamfer distance defined in Eq. 3.



• The geometric loss Eg minimizes the 3D Chamfer dis-
tance between 3D SLAM (or SfM) points and points on the
current object shape estimate:

Eg(zk,T
k
wo) = DC(Xslam,T

k
woG(z)), (7)

Dense Optimization. The shape code and pose estimated
with the sparse optimization can be further refined with a
dense optimization over all surface points and using the
DeepSDF decoderGd(z). SinceGd(z) uses an implicit rep-
resentation of the object surface, we compute a proxy mesh
at each iteration, and formulate the energy over its vertices.
This strategy proved faster than sphere tracing [25], while
achieving on-par accuracy, see Table 3. Relevant Jacobians
are derived analytically and are given in the supplementary
material together with further implementation details. We
now describe the dense energy terms.
• The photometric and geometric losses Ep, Eg are equiva-
lent to those used in the sparse optimization (see Eq. 5, 7).
However, they are evaluated densely and the photometric
optimization makes use of a Lucas-Kanade style warp.
• The silhouette loss Es takes a different form to the sparse
case. We follow traditional level set approaches, compar-
ing the projections of object estimates with observed fore-
ground and background probabilities Pf,b:

Es =

∫
Ω

H(φ)Pf (x) + (1−H(φ))Pb(x)dΩ, (8)

where φ is a 3D or 2D shape-kernel, and H a mapping to a
2D foreground probability field, resembling an object mask
of the current state. Empirically, we found that 3D shape-
kernels [36] provide higher quality reconstructions when
compared with a 2D formulation [37] because more regions
contribute to gradients. While H is a Heaviside function in
the presence of 2D level-sets, we interpret signed distance
samples of the DeepSDF volume as logits and compute a
per-pixel foreground probability by accumulating samples
along rays, similar to Prisacariu et al. [37]:

H = 1− exp
∏

x on ray

(1− sig(ζ · φ(x))) , (9)

where ζ is a smoothing coefficient, and 1− sig(ζ ·φ(x)) the
background probability at a sampling location x. A step-
size of r

50 is chosen, where r is the depth range of the object-
space unit-cube.

6. Experimental Evaluation
Our focus is to evaluate the performance of FroDO on

real-world datasets wherever possible. We evaluate quan-
titatively in two scenarios: (i) single-view, single object
on Pix3D [44]; and (ii) multi-view, single object on the
Redwood-OS [4] dataset. In addition, we evaluate our full

Figure 6: Examples of single view reconstruction on Pix3D
dataset [44]. Ground truth on the right for reference.

IoU ↑ EMD ↓ CD ↓
3D-R2N2 [6] 0.136 0.211 0.239
PSGN [9] N/A 0.216 0.200
3D-VAE-GAN [50] 0.171 0.176 0.182
DRC [46] 0.265 0.144 0.160
MarrNet [49] 0.231 0.136 0.144
AtlasNet [14] N/A 0.128 0.125
Sun et al. [44] 0.282 0.118 0.119
Ours (DeepSDF Embedding) 0.302 0.112 0.103
Ours (Joint Embedding) 0.325 0.104 0.099

Table 1: Results on Pix3D [44]. Our method gives the high-
est Intersection over Union and lowest Earth Mover’s and
Chamfer Distances.

approach qualitatively on challenging sequences from the
real-world ScanNet dataset [7] that contain multiple object
instances. In all cases we use MaskRCNN [15] to predict
object detections and masks. We run Orb-SLAM [29] to
estimate trajectories and keypoints on Redwood-OS but use
the provided camera poses and no keypoints on ScanNet.

6.1. Single-View Object Reconstruction

First we evaluate the performance of our single-view
shape code prediction network (Sec. 5.2) on the real world
dataset Pix3D [44]. Table 1 shows a comparison with com-
peting approaches on the chair category. The evaluation
protocol described in [44] was used to compare IoU, Earth
Mover Distance (EMD) and Chamfer Distance (CD) errors
(results of competing methods are from [44]). Our proposed
encoder network outperforms related work in all metrics.
Table 1 also shows an improvement in performance when
our new joint shape embedding is used (Ours Joint Em-
bedding) instead of DeepSDF [32] (Ours DeepSDF Embed-
ding). Figure 6 shows example reconstructions.



Optim. Method Energy Terms CD (cm.)

Sparse Es + Er 8.97
Sparse Es + Ep + Eg + Er 8.59

Sparse + Dense Es + Er 7.41
Sparse + Dense Es + Ep + Eg + Er 7.38

Table 2: Ablation study of estimates after sparse and dense
optimization stages on the Redwood-OS dataset. We com-
pare the effect of different energy terms in Eq. (4).

PMO (o) PMO (r) DIST (r) Ours (r)
Cars 0.661 1.187 0.919 1.202
Planes 1.129 6.124 1.595 1.382

Table 3: Non-symmetric Chamfer distance (completion) on
first 50 instances of the synthetic PMO [24] test set. While
(o) indicates the original PMO method with its own initial-
ization, (r) indicates random initialization.

6.2. Multi-View Single Object Reconstruction

We quantitatively evaluate our complete multi-
view pipeline on the chair category of the real-world
Redwood-OS dataset [4] which contains single object
scenes. We perform two experiments: an ablation study to
motivate the choice of terms in the energy function (Table
2) and a comparison of the performance of the different
steps of our pipeline with related methods (Table 4). Table
3 includes a comparison of our dense photometric opti-
mization with the two closest related approaches [24, 25]
on a commonly-used synthetic dataset [24].
Ablation study. Table 2 shows an ablation study on dif-
ferent energy terms in our sparse and dense optimizations
(Eq. 4). The combination of geometric and photometric
cues with a regularizer on the latent space achieves best re-
sults. The supplementary material includes further experi-
ments on the effect of filtering object detections (Sec. 5.1)
and the efficiency gains of using our joint embedding.
Synthetic dataset. Table 3 shows a direct comparison of
the performance on the synthetic PMO test set [24] of our
dense optimization when only the photometric loss Ep is
used in our energy, with the two closest related methods:
PMO [24] and DIST [25]. Notably, both DIST and our ap-
proach achieve comparable results to PMO from only ran-
dom initializations. When PMO is also initialized randomly
the results degrade substantially.
Redwood-OS dataset. Table 4 shows a comparison with
Pix2Vox [51], a purely deep learning approach, and with
PMO [24], both of which are state-of-the-art. For refer-
ence, we also compare with COLMAP [40,41] a traditional
SFM approach. Since COLMAP reconstructs the full scene
without segmenting objects, we only select points within the
ground-truth 3D bounding box for evaluation. We report er-
rors using: Chamfer distance (CD), accuracy (ACC (5cm)),

completion (COMP (5cm)) and F1 score – all four com-
monly used when evaluating on Redwood-OS. Chamfer
distance (CD) measures the symmetric error, while shape
accuracy captures the 3D error as the distance between pre-
dicted points to their closest point in the ground truth shape
and vice-versa in the case of shape completion. Both shape
accuracy and completion are measured in percentage of
points with an error below 5cm. Following [24], we use
an average of 35 input frames sampled from the RGB se-
quences, though for completeness we show results with 350
views. Fig. 7 shows example reconstructions.

We outperform Xie et al. [51] by a significant margin
which could point to the lack of generalization of purely
learning based approaches. We also outperform PMO [24],
a shape prior based optimization approach like ours, but
which lacks our proposed coarse-to-fine shape upgrade.
COLMAP fails to reconstruct full 3D shapes when the num-
ber of input images or the baseline of viewpoints is limited
as it cannot leverage pre-learnt object priors. Although, as
expected, the performance of COLMAP increases drasti-
cally with the number of input images, it requires hundreds
of views to perform comparably to our approach.

6.3. Multi-Object Reconstruction

We demonstrate qualitative results of our full approach
on the ScanNet dataset [7] on challenging real world scenes
with multiple object instances in Fig. 1 and Fig. 8. MaskR-
CNN [15] was used to predict 2D b-boxes and masks. The
association of object detections to 3D object instances be-
comes an additional challenge when dealing with multi-
object scenarios. Our results show that our ray clustering
approach successfully associates detected bounding boxes
across frames and our coarse-to-fine optimization scheme
provides high quality object poses and reconstructions.

7. Conclusions and Discussion
We introduced FroDO, a novel object-oriented 3D recon-

struction framework that takes localized monocular RGB
images as input and infers the location, pose and accurate
shape of the objects in the scene. Key to FroDO is the use
of a new deep learnt shape encoding throughout the differ-
ent shape estimation steps. We demonstrated FroDO on
challenging sequences from real-world datasets in single-
view, multi-view and multi-object settings. An exciting
open challenge would be to extend FroDO to the case of
dynamic scenes with independently moving objects.
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Method Few observations (average 35 views) Over-complete observations (average 350 views)

CD (cm) ACC (5cm) COMP (5cm) F1 score CD (cm) ACC (5cm) COMP (5cm) F1 score

COLMAP [40, 41] 10.58 84.16 54.28 65.99 6.05 91.41 94.59 92.97

Pix2Vox [51] 12.12 55.27 64.74 59.63 11.87 55.88 66.09 60.56
PMO [24] 12.13 53.08 69.42 60.16 11.93 54.80 69.54 61.30
FroDO Code Fusion (Vote) 12.19 60.74 60.55 60.64 11.97 61.37 58.20 59.74
FroDO Code Fusion (Aver.) 10.74 61.31 72.11 66.27 10.57 61.06 72.14 66.14
FroDO Optim. Sparse 8.69 70.58 79.10 74.60 8.59 71.69 81.63 76.34
FroDO Optim. Dense 7.38 73.70 80.85 76.64 7.37 74.78 81.08 77.32

Table 4: Quantitative evaluation on 86 sequences of Redwood-OS. We compare state of the art competitors Pix2Vox [51]
and PMO [24] with the results at different stages of our multi-view pipeline (code fusion −→ sparse optimization −→ dense
optimization). Average code outperforms majority voting. FroDo outperforms all methods when 35 input images are used.

RGB GT Scan COLMAP PMO FroDO (sparse) FroDO (dense)

Figure 7: Example 3D reconstructions achieved with different approaches on three sample sequences from Redwood-OS. In
all cases 35 input views were used.

Figure 8: Qualitative results on four ScanNet RGB input sequences. We reconstruct multiple instances of the chair and table
classes. While outputs are satisfactory for the first three scenes, the last one highlights failures due to heavy occlusions and
partial observations. Top row: Object instances reconstructed by FroDO are shown in colour while grey shows the ground
truth background (not reconstructed by our method) for reference. Bottom row: full ground truth scan for comparison.
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Supplemental Material for FroDO: From Detections to 3D Objects

Figure 1: Examples of 2D detections filtering based on the projection of 3D bounding box. The red and green boxes are 2D
detections and projections of 3D bounding boxes respectively. From left to right: reject due to size, reject due to occlusion,
reject due to overlap, accept.

1. Detection Pruning

After estimating the bounding box of an object, good
views are selected by employing a pruning scheme. This
scheme uses three criteria to reject frames based on (1)
bounding box size, (2) occlusions and (3) overlap with other
objects. (1) is implemented via a threshold on the width and
height of the bounding box (BB), and (2,3) are implemented
using a threshold on the intersection over union (IoU) of
the bounding boxes. Figure 1 illustrates these strategies.
The selection helps to identify better initial detections to ex-
tract good shape codes and later on leads to an optimization
with clean energy terms. An ablation study on the detection
pruning on Redwood-OS dataset is demonstrated in Table 1.

2. DP-mean based Line Segment Clustering

Dirichlet Process (DP)-mean clustering is similar to
K-mean clustering as it also runs in an Expectation-
Maximization manner. A key difference is that the total
number of cluster is unknown at first. A new cluster is gen-
erated when the distance between a line segment and any
existing clusters is larger than a cluster penalty threshold,
which we set to 0.4. Our clustering algorithm runs as fol-
lows: Given a new object detection, which is represented by
a line segment, we calculate the distance between this new
line segment and existing clusters. If the distance is larger
than the cluster penalty threshold, this observation becomes
a new cluster, the cluster center is initialized at the median
point of the line segment. Algorithm 1 details each step.

Algorithm 1: DP-mean clustering for 3D line seg-
ments

Input: r1, r2, ..., rn : n rays
λ : cluster penalty threshold

Output: c1, c2, ..., cm : m object clusters
1. init. µ1 = mid(r1), mid() is to compute the
middle point of a ray;

2. while not converged do
for each ri do

dij = min
µ1...k

dist(µk, ri);

if dij ≥ λ then
set k = k + 1;
µk = mid(ri);

else
zi = j;

end
end
k clusters are generated, where
ck = {ri|zi = k};

for each ci do
µi = lstsq(ck);

end
end

3. Dense Shape Code Optimization
In order to implement the dense optimization efficiently,

certain measures were taken to achieve an effective opti-

1



Method Vote Average

CD [cm] w/o occlusion filter 12.17 11.73
CD [cm] w/ occlusion filter 11.97 10.57

Table 1: Ablation study on using the inferred 3D bounding
box to filter occluded views.

mization procedure. The following two sections explain de-
cisions for the formulation of analytical partial derivatives
and for the implementation these.

3.1. Analytical Partial Derivatives

As the DeepSDF decoder yields signed distance values,
in contrast to the pointcloud decoder which outputs ob-
ject coordinates, neither Eg nor Ep are explicitly defined.
Therefore, dense object coordinates are extracted by sam-
pling the zero-crossing of the distance field and Jacobians
are derived analytically. While most of the derivatives of
Ep and Eg wrt. code and pose follow the chain rule, the
relevant term ∂x

∂z = ∂x
∂Gd

∂Gd

∂z needs more attention.
Intuitively, the change of a surface coordinate x with re-

spect to a change in code z is ambiguous due to potential
changes in topology. However, as shown by [1] it is possi-
ble to derive a first-order approximation as follows. Given
a location x(z) on the surface as a function of code z, the
corresponding distance value remains constant at the zero-
crossing, implying:

∂Gd(x(z), z)

∂z
= 0 (1)

Using the multivariable chain rule, and solving for ∂x
∂Gd

,
yields:

∂x

∂Gd
= −∂Gd

∂x

−1 ∂Gd
∂z

(2)

Here, the pseudo-inverse of ∂Gd

∂x is orthogonal to the tangent
plane and hence points in the direction of the surface nor-
mal. Since the SDF decoder Gd is differentiable, ∂x∂z can be
calculated easily using this first-order approximation. Fig-
ure 2 visualizes ∂Gd

∂z for 9 different shape code components
and demonstrates that many parts of an object are affected,
when a single component changes.

3.2. Implementation Details

Multiple techniques are employed in order to speed up
the dense optimization stage. Since executing the network
is the most expensive step in the optimization, the number
of forward and backward passes are kept to a minimum.
At the beginning of each iteration the DeepSDF volume is
sampled with an adaptive resolution. First, on a dense grid
with a distance of δ between samples along a every dimen-
sion and afterwards at a higher resolution for voxels close

Figure 2: Visualization of ∂Gd

∂z for 9 different code com-
ponents, demonstrating shape changes when single compo-
nents change. Red (positive values) indicates an intrusion,
while blue (negative values) indicates an extrusion.

the object boundary, i.e. when−δ < Gd < δ, where δ is the
DeepSDF truncation factor as described by Park et al. [7].
A mesh corresponding to the current code estimate is then
obtained by running marching cubes [2] on the samples and
used as a proxy for the current state. Each vertex contains
∂Gd

∂x and ∂Gd

∂z and as a result data required to minimize the
energies is generated by rendering the mesh to observed de-
tections and is independent of sampling. Rasterized mesh
data is directly copied from OpenGL to CUDA for the opti-
mization.

Further, a pyramid scheme is implemented which aids
convergence when starting from a bad initialization, im-
proves run-time and reduces the memory footprint of the
optimization. For every detection with width w and height
h, only pyramid levels l with a bounded shape (r2min <
w·h
4l

< r2max) are considered. In our experiments, rmin and
rmax are always 40 and 400 respectively.

4. Network Architecture and Training

4.1. Decoder for Joint embedding

The shared joint embedding is 64 dimensional. The net-
work is split into two independent branches for point cloud
and DeepSDF respectively. The point cloud branch is com-
posed of four fully connected layers each with 512, 1024,
2048, 2048 × 3 as output dimensions. We use ReLU as
a nonlinear activation function following each fully con-
nected layer except the last one. Readers can refer to [7]



Method sec. /iteration # of iteration

PMO [5] 12.59 100
Optim. Dense 4.96 100
Optim. Sparse 0.07 200

Table 2: Speed comparison between PMO [5] and our
method on the same sequence of 60 frames.

for a detailed discussion of the DeepSDF architecture that
is employed in the dense branch. The joint autodecoder is
trained for 2000 epochs with a batch size of 64. There are
16384 SDF samples for each shape. The learning rate for
network parameters and latent vectors are 5·10−3, and 10−3

respectively, decayed by 0.5 for every 500 epochs.

4.2. Encoder Network

After we train the decoder network as described in Sec.
4.1, we obtain a set of embeddings z ∈ R64 for the cor-
responding CAD models. In the second stage, we train an
encoder network that maps an image to the latent code. We
tailor ResNet50 to output a vector of dimension 64 and ini-
tialize the network with pretrained models. We train the
network for 50 epochs to minimize a Huber loss with a
polynomial decaying learning rate of 10−3. The network
for the embedding is trained in a way similar to Li et al. [4].
However, our deep learning based shape embedding is very
different from the non-parametric embedding used in [4].

5. CAD retrieval on Pix3D dataset
In Fig. 3 we show more examples of CAD model re-

trieval on Pix3D dataset [8]. We find the nearest CAD
model based on Euclidean distance of our shape codes.

6. Dual-Representation Efficiency Gain
One motivation for using a shared code space for a point-

based and SDF-based representation is that the efficiency
of a sparse optimization can be leveraged, while exploiting
richer information when subsequently applying fewer dense
iterations. A comparison of optimization run-times shows
that the pointcloud-based representation is approximately
two orders of magnitude faster than the mesh optimization
used by PMO [5] and DeepSDF [7] as shown in Table 2.

7. Redwood Dataset Augmentation
While Pix3d [8] is a real-world dataset available

for single-view object shape reconstruction, multi-view
datasets with ground truth 3D data are scarce. Previ-
ous multi-view learning based methods primarily evaluate
their methods on synthetic data [5]. We post-process the
Redwood-OS dataset [3] and will release it to facilitate

benchmarking on real-world data. It contains RGBD se-
quences and dense full scene reconstructions. To isolate
object shapes for evaluation, we manually select sequences
that have full 3D object shapes and manually segment them
from the full scene mesh. We run RGBD ORB-SLAM2 [6]
to estimate camera poses.

8. Qualitative results on Redwood-OS dataset
Additional qualitative results on the Redwood-OS

dataset are shown in Figure 4. As in the main paper,
groundtruth, sparse COLMAP, dense COLMAP, our sparse
reconstructions and our dense reconstructions are com-
pared.
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Figure 3: From left to right: input image and the nearest CAD models in latent space sorted by distances.
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Figure 4: Comparison of different approaches to object shape reconstruction on some examples from Redwood-OS dataset.


